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Abstract. This paper investigates the feasibility of using pre-trained generative 

Large Language Models (LLMs) to automate the assignment of ICD-10 codes to 

historical causes of death. Due to the complex narratives often found in historical 

causes of death, this task has traditionally been manually performed by coding 

experts. We evaluate the ability of GPT-3.5, GPT-4, and Llama 2 LLMs to accu-

rately assign ICD-10 codes on the HiCaD dataset that contains causes of death 

recorded in the civil death register entries of 19,361 individuals from Ipswich, 

Kilmarnock, and the Isle of Skye in the UK between 1861-1901. Our findings 

show that GPT-3.5, GPT-4, and Llama 2 assign the correct code for 69%, 83%, 

and 40% of causes, respectively. However, we achieve a maximum accuracy of 

89% by standard machine learning techniques. All LLMs performed better for 

causes of death that contained terms still in use today, compared to archaic terms. 

Also, they performed better for short causes (1-2 words) compared to longer 

causes. LLMs therefore do not currently perform well enough for historical ICD-

10 code assignment tasks. We suggest further fine-tuning or alternative frame-

works to achieve adequate performance. 

Keywords: Large Language Models, Historical Data, Historical Causes of 

Death, GPT, Llama, Machine Learning, ICD, ICD-10, ICD-10h 

1 Introduction 

In historical demography, one of the main tasks is converting the existing knowledge 

bases of historical registers and microdata into encoded form, so that they can be more 

easily utilised for research purposes. Many classification systems have been created 
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over the years to help standardise the converted data, such as the Historical International 

Standard of Classification of Occupations (HISCO) [1] for occupational information, 

or the International Classification of Diseases (ICD) [2] for health information. How-

ever, a shared, defining trait of all these classification systems is that, when applied to 

historical data, the encoding requires a tremendous effort in terms of manual work, 

usually done by domain experts.  

 The aim of this paper is therefore to explore the possibility of using Large Lan-

guage Models (LLMs) to automate the encoding of historical causes of death into the 

ICD-10 system.1 In the WHO’s current ICD-10 classification system, there are over 

14,000 unique codes in the base version [4], but several countries have their own, ex-

tended versions of previous revisions of the system. Additionally, there are several 

codes with a high degree of overlap, making it challenging to distinguish one disease 

or injury from another, for both human experts and automated systems. 

LLMs such as GPT (Generative Pre-trained Transformer) and Llama are artificial 

intelligence models built to both understand and generate human-like text. They are 

based on the transformer deep learning architecture presented by Vaswani et al. in 2017 

[5]. They have multiple uses, in particular within the field of Natural Language Pro-

cessing (NLP) [6–8], and have shown great potential for understanding text and for 

classification problems [9, 10]. Prompt engineering is a key feature for LLMs. All mod-

els require a prompt, which is the input to the model provided by a user through text, 

and by combining this with a set of instructions as to how the model should behave we 

can expect model performance to increase [11]. It is even possible to provide the models 

with highly specific examples of desired behaviour and outputs [12]. 

 A notable drawback with LLMs is their propensity to “hallucinate” [13], meaning 

that the models present outputs that are falsehoods. Also, LLMs are black boxes and 

therefore lack the needed transparency to explain their responses. Other machine learn-

ing (ML) models can provide a confidence metric for how confident the underlying 

algorithm is about a predicted value. This is not possible for an LLM because it does 

not predict an answer to the input text. Rather, it generates a response text by continu-

ally predicting which token should be next in the sentence it is constructing [14].  

Despite these drawbacks, LLMs have previously been used to generate ICD-10 bill-

ing codes2 from modern hospital datasets [15, 16], and given the potential upsides in 

terms of time and resources saved through an automated system, we believe that per-

forming an exploratory study into using LLMs to encode historical causes of death is 

worthwhile. We evaluate how current LLMs would perform for the specialised task of 

classifying a dataset containing a mixture of historical and currently used terms for a 

variety of causes of death.  

 
1  Initially, the primary goal of the study was to assign ICD-10h codes, a version of ICD-10 

created for use on historical causes. However, due to the unavailability of the ICD-10h system 

online, we concentrated on ICD-10. We believe the findings of this study are transferable to 

ICD-10h when it is accessible to LLMs. [3]  
2  Billing codes are standardized codes used in the healthcare industry of some countries to rep-

resent various medical procedures, treatments, and services. These codes serve as a means of 

communication between healthcare providers, insurance companies and regulatory bodies, 

facilitating the billing and reimbursement process for medical services. 



Up until now the work of assigning ICD codes to historical causes of death has been 

a process done manually by domain experts [17–20], but state-of-the-art ICD classifi-

cations for contemporary datasets [21–23] are usually achieved using pre-trained en-

coder transformers such as BERT [24] or automated coding systems such as ACME 

[25, 26]. Recently, we have seen an increased interest in exploring the capabilities of 

LLMs for ICD classification and other health data related tasks. Soroush et al. [15] have 

assessed the performance of OpenAI’s GPT-3.5 and GPT-4 when generating ICD bill-

ing codes, but found that the LLM’s tendency to “hallucinate” key details would present 

too much of a problem for actual implementation in a healthcare context. Boyle et al. 

[16] created a novel tree search approach, guided by the LLM and based on the ICD 

code description, and managed to achieve competitive results without doing any task-

specific training. 

2 Methods 

2.1 LLMs 

We employ OpenAI’s default GPT-3.5-turbo and GPT-4 (Generative Pre-trained 

Transformer), as well as Meta’s Llama 2 model, specifically the Llama-2-13b-chat-hf. 

The GPT models were accessed through OpenAI’s API, while the Llama 2 model ran 

on a local machine. Note that using this API is a paid service [27]. We performed the 

experiments between November 1st and 8th in 2023. We kept the model parameters at 

a default level to get the models’ base level performance on the task, but we also em-

ployed prompt engineering to explore how this impacts the LLMs’ performance. 

2.2 Prompt engineering 

The way a prompt is phrased has a massive impact on the LLM output. The models are 

also very susceptible to the tone of the user’s feedback. If a user says that the answer is 

incorrect, the model changes its answer. Hence, we found that a set of very clear and 

concise instructions on how to behave, in a very neutral tone, works best. The structure 

of a prompt can vary significantly depending on the specific task or desired outcome, 

as well as the type of LLM.3 Usually, however, there will be a System prompt and a 

User prompt. The System prompt defines the base behaviour or sets the context for the 

model, it can also include specific instructions. In our example below, most of the 

prompt is a System prompt, defined by writing “role: system”. The User prompt follows 

next and is where the user interacts with the model by providing a query or input. This 

part is defined by writing “role: user”. Our prompt for the GPT models is shown below. 

{'role’: 'system', 'content': """Assistant is an intelli-

gent chatbot designed to help the user assign clinical 

ICD-10 codes to causes of death. 

 
3  The prompt shown in this text follows the format required by OpenAI’s GPT models. Other 

types of LLMs may have different structures and syntax. 
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         Instructions: 

         - Only answer using standard ICD-10 codes, do 

not use ICD-10-CM billing codes. 

         - Only return a single ICD-10 code per injury 

and/or disease found in the given cause of death. 

         - Each ICD-10 code should not consist of more 

than 5 characters, the typical format looks like this: 

'X01.0' 

         - Your answers should be in the following for-

mat: 'Cause of death: <CAUSE OF DEATH>, ICD-10 code: 

<ICD-10 CODE>' 

         - If you are unsure of an answer, do not try to 

guess. Instead, write the following reply: 'Cause of 

death: Unknown, ICD-10 code: Æ99.9'."""}, 

         {'role': 'user', 'content': input_from_user + 

'?'} 

In our case, we are supplying the LLM with a cause of death in the User prompt, and 

the instructions for how to respond in the System prompt. This would, ideally, result in 

the following type of exchange between the user and the LLM: 

Input – tabes mesenterica? 

Output - Cause of death: Tabes mesenterica, ICD-10 code: A18.3. 

 

2.3 Historical Causes of Death (HiCAD) dataset 

The dataset used in this project was created by a team at the Cambridge Group for the 

History of Population (CAMPOP) at the University of Cambridge. It covers three areas 

of the UK, the town of Ipswich in England, and the town of Kilmarnock and the Isle of 

Skye, both in Scotland. It spans the period 1861 to 1901 and includes 45,687 individual 

registered deaths. There are only infant deaths (i.e., a child who died prior to their first 

birthday) for Ipswich, while Skye and Kilmarnock also have deaths from other age 

groups, hence roughly ⅓ of the total deaths are those of infants. Historic causes of death 

are notoriously difficult to code, since there are many blank or illegible entries as well 

as archaic terms, vague causes, and symptoms. Although it was a legal requirement for 

the cause of death to be certified by a doctor in both England and Scotland at this time, 

this did not universally happen, particularly when the deceased had not been treated by 

a doctor during their last illness. In such cases, a cause of death suggested by the in-

formant (usually a relative) might have been recorded instead. Patterns of medical treat-

ment mean that the deaths of the very young, the very old, and those who died from 

accidents or acute conditions were less likely to have been allocated a cause by a doctor. 

On the other hand, the ease of identifying particular causes, such as certain infectious 

diseases with very characteristic marks like the distinctive rash from smallpox or the 

red, swollen tongue of scarlet fever, means that the reporting of deaths from such causes 

may be more reliable, even if the informant was a lay person [28, 29].  

This dataset was manually constructed, in batches, by two domain experts over at 

least a decade. It has been coded to both the 10th revision of the International Statistical 



Classification of Diseases and Related Health Problems (ICD-10) as well as a variant 

of the ICD-10 called the ICD-10h, to accommodate causes of death found in historical 

populations. The latter was originally developed for the Digitising Scotland project, 

based at the University of Edinburgh [30]. Currently it is being expanded for European 

comparisons by the SHiP+ network [3].  

The ICD-10h version is currently only available offline and therefore not part of any 

LLM training set. This makes it unfeasible to directly use current commercial LLMs to 

classify causes of death into the ICD-10h system without fine-tuning or embedding the 

knowledge into the model. However, since each cause of death in the dataset was given 

both a corresponding ICD-10 and ICD-10h code, we can instead use the ICD-10 code 

as the target for classification.   

From this dataset of 45,687 registered deaths, we constructed a smaller dataset of 

cause of death strings by randomly sampling 19,361 individuals. This was done to re-

duce the cost of using the GPT models. We will refer to this smaller dataset as the 

HiCaD (Historical Causes of Death). The original dataset consisted of 21 variables. In 

addition to personal information about the individual (sex, age at death, length of last 

illness), it also contained the original cause of death text string from the death registra-

tion. This string could contain multiple diseases suffered and/or injuries sustained by 

the person, which were thought to contribute to their death. Each one of these distinct 

diseases and/or injuries had been separated out, standardized, and given an ICD-10h 

code, by the original domain experts. For the HiCaD dataset however, we only kept the 

variables that were necessary for doing predictions through the LLMs and to analyse 

the results; the original cause of death text string, the first injury/illness reported as a 

cause of death and its corresponding ICD-10/ICD-10h code, and finally the historic 

category of disease (e.g., airborne disease, water- and foodborne disease) assigned. 

2.4 The hierarchical structure of ICD-10 codes 

The ICD-10 coding system represents specific diseases or injuries as an alphanumeric 

code, usually up to 4 characters long. The ICD classification system is constructed us-

ing a hierarchy with 5 levels (Table 1). The first level corresponds to a chapter within 

the classification system but is not represented as a character in the final code. Levels 

2 and 3 serve to narrow down the type or location and are represented by the first 3 

characters in the code, called blocks. Most of the three-character categories are subdi-

vided by means of a fourth, numeric character after a decimal point, allowing up to 10 

subcategories (0-9); this is the fourth level. The final level is the actual code that is 

given to the disease or injury. 
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Table 1. Example overview of the hierarchical structure of the ICD-10 system 
Level Level name Code range Description 

1 Chapters I-XXII Each chapter represents a type of disease or injury 

2 Blocks A00-B99 Certain infectious and parasitic types 

3 Categories A15-A19 Tuberculosis 

4 
Subcategories 

A15.0-A15.9 
Respiratory tuberculosis, bacteriologically and 

histologically confirmed 

5 Code A15.1 Tuberculosis of lung, confirmed with culture only 

 

Within the ICD-10 and ICD-10h coding systems, there exist variables that categorise 

causes of death by type. For the ICD-10 system this is the chapter, and the ICD-10h 

equivalent is called Historical category (Histcat). Late twentieth and twenty-first cen-

tury data can be accurately classified using the ICD-10 chapters, but chapters aren’t 

always appropriate or useful for classifying historic causes of death. This is partly be-

cause codes were assigned to words or terms which could change meaning over time 

and partly because the lack of specificity in historic causes means that many historic 

causes end up in the “Signs and Symptoms” Chapter of ICD-10. Histcat offers a more 

historically sensitive classification which ensures codes are grouped in ways which re-

flect 19th century usage and knowledge. 

2.5 Experiments 

Correct and incorrect classification. In the experiment, we assessed model perfor-

mance on the HiCaD dataset by counting the number of codes that were correctly as-

signed, defined in two ways: a full match (exact correspondence with the expert as-

signed ICD-10 code) and a partial match (the first three characters of the model’s out-

put match the expert-assigned code). We accepted partial matches since the fourth char-

acter of ICD-10 codes has only ten possible variations, simplifying manual correction. 

Additionally, we performed an error analysis for the causes of death where the LLMs 

could not assign a correct ICD-10 code, to determine which types of errors were more 

common. We subdivided the errors into four categories: 1) The LLM assigned the error 

code 'Æ99.9', which we defined as part of the model prompt; 2) The LLM hallucinated 

a valid ICD-10 code; 3) The LLM hallucinated an invalid ICD-10 code (here, we define 

a 'valid code' as one found in the WHO’s ICD-10 Version:2019 [31]); 4) The LLM gave 

a syntactically incorrect output, making it impossible to extract an ICD-10 code for the 

cause of death.  

 

Comparison with alternative methods. The second experiment aimed to compare the 

results of the LLMs with two alternative classification techniques. The first alternative 

was using traditional Machine Learning-based models, Random Forest [32], and Sup-

port Vector Machine (SVM) [33]. To test the models, we created a dataset with two 

columns: the causes of death text strings from HiCaD and the corresponding ICD-10 

code. The preprocessing stage included removal of punctuation marks and extra 

whitespaces as well as the conversion of all characters into lower case. The sample 



dataset included 19,360 deaths, which we split into an 80:20 ratio for training and test-

ing. Text feature extraction was performed using the term frequency-inverse document 

frequency (TF-IDF) method, and we used GridSearchCV to perform a systematic 

search over a range of hyperparameters to find the best configuration for our task. 

Random Forest is an ensemble learning method that combines multiple decision 

trees to enhance predictive accuracy. It minimises overfitting and captures complicated 

relationships well as it builds each tree using bootstrapped data and takes random fea-

ture subsets into account.  

SVM is a robust algorithm for classification and regression. It seeks the optimal hy-

perplane to maximise the margin between classes in feature space. For this experiment 

we used a linear kernel for the SVM, as the kernel’s simplicity not only ensures faster 

training times, but also helps in reducing the risk of overfitting. Additionally, it tends 

to generalize better when the decision boundary is inherently linear or nearly linear, 

which is often the case with text data represented in high-dimensional space. 

We used 5-fold cross-validation within GridSearchCV to evaluate the performance 

of different hyperparameter configurations for both models. In 5-fold cross-validation, 

the data is split into five subsets (folds), and the model is trained on four of them while 

being tested on the remaining fold. This process is repeated five times, each time with 

a different fold as the test set. The results are averaged to provide a robust estimate of 

model performance. This approach helps in ensuring that the model generalizes well to 

unseen data. 

The second alternative was a basic string similarity comparison method, comparing 

the HiCaD dataset with a dictionary of standardised causes of death, originally created 

by domain experts. 

 

Temporal context of the causes of death. We expected that LLMs would perform 

worse on terms that only exist in historical registers or have a different meaning from 

the current understanding of the term. Therefore, our third experiment aimed to com-

pare the number of correct classifications done by the LLMs for both types of terms. 

We sorted our causes of death into what we refer to as “archaic” and “current” causes, 

using the manually coded ICD-10h code. If the final character in the ICD-10h code is 

a 0, it means that this is a cause of death term that exists in both contemporary and 

historic registers. If the ICD-10h code ends in any other digit, then the cause of death 

term is only found in historical registers, or the term might be understood differently 

today. 

 

Complexity of the input values. Over 80% of the original cause of death text strings 

within the HiCaD dataset consist of 3 words or less, but the remaining 20% cover a 

range of 4-41 words. In our fourth experiment, we calculated if the number of words in 

the input text had any impact on the models’ ability to correctly assign the cause of 

death to an ICD-10 code. 

To do this, we grouped the causes of death by word count as short (1-2 words), 

medium (3-4 words), and long (5+ words) and measured the error rate for each group. 

These cutoffs were chosen as causes with one or two words are likely to represent just 

a single cause of death (e.g. “pneumonia”, “scarlet fever”) but causes with more words 
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are more likely to represent accidents and multiple causes of death (e.g. “pneumonia 

following measles”).  

To measure the agreement between the three LLM models, that is, the extent to 

which all LLMs assigned the same code for each cause of death, the Fleiss Kappa [34] 

score was calculated. This was done per word count category and for overall match/no 

match agreement between the models. Values above 0.2 indicate fair agreement, above 

0.4 moderate, above 0.6 substantial, above 0.8 almost perfect. 

 

Histcat classification. Each ICD-10 code can only belong to a single historical cate-

gory (Histcat). In the fifth experiment we calculated if the distribution of ICD-10 codes 

within the Histcats in the manually coded HiCaD dataset matched the distribution in 

the models’ outputs. This tells us if there were any particular types of Histcats that the 

LLMs are worse at classifying than others. 

3 Results 

3.1 Correct and incorrect classification 

For the HiCaD dataset, consisting of 19,353 cause of death text strings, GPT-3.5 coded 

the causes as a full match in 31% and a partial match in 38%, with no overlap, meaning 

that 69% of all causes were encoded correctly, and 31% of the causes were given an 

incorrect ICD-10 code. GPT-4 achieved 58% for full matches and 25% for partial 

matches, leading to 83% of all causes of death being encoded into the correct ICD-10 

code, with an error rate of 17%. Llama 2 coded 9% of all causes as a full match, 31% 

as a partial match, and had an error rate of 60%. These results show that GPT-4 outper-

forms GPT-3.5 in the accurate classification of ICD-10 codes, and both models show 

significantly better performance than Llama 2. These results are summarised in Table 

2. 

Table 2. An overview of how LLMs encoded the historical causes of death. 

Model Full match Partial match Correct (full + partial) Errors 

GPT-3.5 31% 38% 69% 31% 

GPT-4 58% 25% 83% 17% 

Llama 2 9% 31% 40% 60% 

 

When analysing the different errors made by the LLMs, starting with the assignment 

of the predefined error code ‘Æ99.9’, GPT-3.5 assigned this code to 19% of its errors, 

while GPT-4 did so for 7% of its errors. Llama 2, on the other hand, never used the 

error code. As for hallucinations of valid ICD-10 codes, GPT-3.5 reported these in 50% 

of cases, GPT-4 in 48%, and Llama 2 showed a higher tendency with 61%. For hallu-

cinations of invalid ICD-10 codes, GPT-3.5 lowest occurrence at 5%, compared to 9% 

for GPT-4 and a significantly higher 28% for Llama 2. Finally, for syntactical errors, 

GPT-3.5 had 26%, GPT-4 had 36%, and Llama 2 had the lowest at 11%. These results 



show that GPT-3.5 was more prone to respond with the error code, whereas more of 

GPT-4 and Llama 2’s errors stem from hallucinations or syntax errors. Additionally, 

Llama 2 exhibited a higher frequency of hallucinating valid codes compared to the GPT 

models, but GPT-4 was more likely to hallucinate invalid codes than GPT-3.5. These 

results are shown in Table 3. 

Table 3. A breakdown of the prediction errors made by the LLMs. 

Error type GPT-3.5  GPT-4 Llama 2 

Error code 19% 7% 0% 

Valid code hallucination 50% 48% 61% 

Invalid code hallucination 5% 9% 28% 

Syntax error 26% 36% 11% 

 

3.2 Comparison with alternate solutions 

Random Forest achieved an accuracy of 87% and SVM achieved an accuracy of 89% 

on a test set of 19,360 cause of death text strings, sampled from the full dataset of over 

45,000 rows. 

 When using string similarity comparison on the HiCaD dataset, consisting of 

19,353 rows, the number of correctly coded causes of death were 6%, meaning that 

94% of all causes were assigned an incorrect ICD-10 code. 

These results show that both Random Forest and SVM outperform the LLMs, with 

the best result obtained by an LLM being 83% correctly assigned ICD-10 codes. It does, 

however, also show that LLMs vastly outperforms string similarity comparison. 

Table 4. The results of using alternative methods to assign ICD-10 codes to causes of death.   

Method Correctly assigned Incorrectly assigned 

Random Forest 87% 13% 

SVM 89% 11% 

String similarity 6% 94% 

 

Table 5. Summation of the results from LLMs and alternative methods. 

Method Correctly assigned Incorrectly assigned 

GPT-3.5 69% 31% 

GPT-4 83% 17% 

Llama 2 40% 60% 

Random Forest 87% 13% 

SVM 89% 11% 

String similarity 6% 94% 
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3.3 Temporal context of the cause of death 

Within the HiCaD dataset, we found that 9,773 rows consisted of causes of death that 

could be categorised as archaic, and 9,580 causes as current. This gives a split of 50.5% 

to 49.5%. When defining both a full and partial match as correct, we obtained the fol-

lowing results: GPT-3.5 correctly assigned ICD-10 codes to 55% of archaic causes of 

death with a 45% error rate, and 83% of current causes with a 17% error rate. GPT-4 

correctly assigned codes to 75% of archaic causes with 25% errors, and 90% correct 

with 10% errors for current causes. Llama 2, however, only managed to correctly assign 

codes to 35% of archaic causes with 65% errors, and 45% of current causes with 55% 

errors. These results are shown in Table 6. 

Table 6. Results for LLM classification of archaic and current causes of death terms. 

Model Correct – Archaic Errors – Archaic Correct - Current Errors - Current 

GPT-3.5 55% 45% 83% 17% 

GPT-4 75% 25% 90% 10% 

Llama 2 35% 65% 45% 55% 

 

3.4 Complexity of input values 

Correct assignment of ICD-10 codes for word categories 1-2, 3-4 and 5+ was 74%, 

61% and 62% for GPT-3.5, 85%, 82% and 71% for GPT-4, and 45%, 32% and 34% 

for Llama 2, respectively. Showing that GPT-4 performed better than GPT-3.5 and both 

outperform Llama 2, this holds for all categories. These results can be seen in Table 7. 

When comparing the degree of agreement between the LLMs, i.e. the extent to 

which all models produced the same output, Fleiss Kappa was lowest for the medium 

(3-4 words) category with 0.19 meaning slight agreement, for short (1-2) words it was 

0.27 which indicates fair agreement. Agreement was fair for the long (5+ words) cate-

gory with 0.31, meaning that the models tended to give the same output most often for 

the causes of death that consisted of 5+ words, and the least often for the causes of 

death that were 1-2 words long. Overall, the models’ agreement was measured as 0.27, 

indicating a fair level of agreement. These results are summarized in Table 8. 

Table 7. Correct assignment of ICD-10 codes by word category 

Model Word category 1-2 Word category 3-4 Word category 5+ 

GPT-3.5 74% 61% 62% 

GPT-4 85% 82% 71% 

Llama 2 45% 32% 34% 



 

Table 8. Degree of agreement between models (Fleiss Kappa) 

Word category Fleiss Kappa value Interpretation 

1-2 words 0.27 Fair 

3-4 words 0.19 Slight 

5+ words 0.31 Fair 

Overall 0.27 Fair 

 

 

3.5 Histcat classification 

Figure 1 shows the causes of death which were classified incorrectly by GPT-4, see 

Table 2, and how these are distributed across the Histcat classification scheme. Despite 

this figure showing the errors made by the model, it is worth noting that multiple ICD-

10 codes can belong to the same Histcat. Therefore, even if the actual ICD-10 code was 

wrong, it could still be assigned to the correct Histcat, as represented by the clusters 

along the diagonal of the heatmap. The number of causes that were classified into the 

correct ICD-10 code, and by extension the correct Histcat, is shown as the percentage 

value displayed next to each Histcat on the Y-axis. The remaining row values displayed 

on the X-axis are the causes of death that were classified into an incorrect ICD-10 code 

as well as an incorrect Histcat. This, all together, means that a desired result in this 

experiment would be a high percentage value listed after each Histcat on the Y-axis, 

and alternatively a higher value on the diagonal than the other row values.  

For example, in the Histcat “Childbirth”, 64% of causes were assigned a full or par-

tial match by the LLM, as displayed in parentheses following the Histcat name on the 

Y-axis. Of the remaining 36% of causes which were classified incorrectly, 54% were 

classified into the correct Histcat but an incorrect ICD-10 code, while 17% were clas-

sified into the Histcat “Perinatal”, 8% were placed within “Ill defined”, etc.  

GPT-4 showed strong performance across most categories, except for “Violence”, 

where it only classified the cause to the correct ICD-10 code in 37% of cases. Despite 

this, it managed to classify those causes into the correct Histcat 89% of the time. The 

opposite can be seen in the “Debility” category, where GPT-4 managed to find the cor-

rect ICD-10 code in 59% of cases, but 0% of the errors for these codes ended up in the 

correct Histcat.  
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Fig. 1. A heatmap of wrong classifications made by GPT-4 in regard to Histcat. If the model 

classified the cause of death into the wrong ICD-10 code, but the erroneous code still belongs to 

the same category, then the errors will cluster on the diagonal. If not, the errors will spread out 

along the row. 

4 Discussion 

4.1 Main findings 

We explored how well out of the box Large Language Models (LLMs) performed on 

classifying ICD-10 codes for historical death records from three different areas of the 

UK. GPT-4 performed the best in terms of coding accuracy among GDPR-compliant 

LLMs, notably surpassing GPT-3.5 and Llama 2, especially for causes of death using 

current terms. All models showed superior performance with causes of death given in 

only (1 or2 words). While model agreement varied with cause length, showing average 

agreement for longer and poor for medium-length causes, overall substantial agreement 



was observed. This tendency to make more errors with longer text strings can possibly 

be explained by the chance of increased ambiguity and the presence of multiple possible 

interpretations. We know from the dataset that causes of death from various forms of 

illness can often only consist of the diseases’ names, whereas for external causes of 

death, like accidents, one is more likely to find complex narratives where interpretation 

plays a large role in determining the actual cause of death. 

Common errors in model classifications were linked to three patterns: abbreviations 

in the source data (e.g., "con" for "consumption"), coding into the chapter of “Symp-

toms, signs and abnormal clinical and laboratory findings, not elsewhere classified” 

which is known to be more difficult to code, and specific terms like “teething” and 

“dentition” that are less common in modern datasets but prevalent in historical infant 

mortality records. We also learned in the breakdown of errors in Table 3 that a signifi-

cant portion of LLM errors involved hallucinating both valid and invalid ICD-10 codes. 

This indicates a tendency of LLMs to “guess” plausible answers, which will lead to 

incorrect classification. We found that GPT-3.5 hallucinated more valid codes than 

GPT-4 did. A possible reason for this behavior could be that GPT-4 has been trained 

on more data than GPT-3.5, and as such may have more instances of variant ICD-10 

classification systems in its training data. Our inclusion of a predefined error code 

("Æ99.9”) was an attempt to include an alternative to hallucinations, but our error anal-

ysis shows that this error code was not consistently adopted by all models, with GPT-

3.5 using it most and Llama 2 not at all. This suggests variations in how models handle 

uncertainty, and that this manner of error-handling is not sufficient when dealing with 

LLMs. In the Histcat classification, the uneven performance we observed may relate to 

the varying number of codes per Histcat, as categories such as “Violence” which con-

tain  more codes  (Violence includes 3,278 unique ICD-10 codes) have a higher likeli-

hood of at least partial classification success than a category with less codes like “De-

bility” which has just 3 unique ICD-10 codes. 

Our experiments showed that traditional machine learning models such as Random 

Forest and SVM outperformed the LLMs in assigning ICD-10 codes. A possible reason 

for this can be that traditional ML models are known to handle structured classification 

tasks more effectively than LLMs, which are generally optimized for broader language 

understanding and generation tasks, without the specialized domain knowledge re-

quired for accurately classifying historical causes of death without additional fine-tun-

ing. Despite this, it is worth noting that these ML models were trained and validated on 

our HiCaD dataset, where the causes of death are not evenly distributed among the 

ICD-10 codes. As such, there is always a risk of these models becoming overfitted, i.e. 

not able to generalize to datasets other than HiCaD. This behavior would be less likely 

in an LLM, due to the increased size of their training data.  Nevertheless, all models 

did surpass the basic string similarity approach using Jaro-Winkler distance. 

Based on the experiments, we have learned three main lessons for working with LLMs 

on this type of classification task: 

• The need for domain-specific tuning. Our findings underscore that gener-

alized LLMs cannot compete with models that were trained on domain-

specific datasets when it comes to such specialized tasks.  
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• Importance of error analysis. Detailed breakdowns of error types are crucial 

for understanding model weaknesses and guiding improvements. 

• Consideration of input complexity. As our findings showed that all models 

performed better on shorter causes of death (1-2 words) compared to longer 

ones, simplifying inputs wherever possible, or developing strategies to han-

dle complex, narrative inputs, can enhance model performance. 

 

4.2 Comparison to related work 

Our findings mostly correlate with those of Soroush et al. [15], in that we have found 

the performance of base level LLM models to be inadequate for practical use when it 

comes to assigning ICD codes to historical causes of death. In our results, most errors 

did not contain the error code we defined as part of our model prompt, which we in-

structed the models to use if it did not “know” the answer. Instead, the majority of the 

errors would fall under the definition of hallucinations, i.e., creating plausible but in-

correct statements [13].  

 We introduced the concept of full matches and partial matches, and we saw that 

all models had a potential for achieving more correct classifications if they had man-

aged to find the correct subcategory for the cause of death. This could have potentially 

been done in a similar manner to what Boyle et al. [16] term “meta-refinement of pre-

dicted codes”. They used a tree-search approach to find all possible, relevant codes for 

their data, and then asked GPT-4 to remove false positives. In Section 4.3, we discuss 

the possibility of prompting the LLMs a second time, to find the correct subcategory 

based on the first 3 characters of the ICD-10 code that were given as output during the 

first round of prompting. 

4.3 Future work 

To achieve the best coding rate possible using LLMs on historical causes of death, one 

technique to use is fine-tuning, a type of transfer learning [35], where pre-trained mod-

els are further trained on new, labelled data [36]. This would entail downloading a pre-

trained LLM and then fine-tune it on a dataset containing causes of death. Based on 

previous studies, we expect that this will yield improved results [37, 38]. 

 As seen in Section 3, all models gave partial matches as part of their outputs, 

indicating that if the last character had also been correct, these causes would have been 

a full match. One possible solution, that can be built upon our current work, is to auto-

mate a solution where each cause of death is passed in to a LLM for a second round of 

classification, this time presenting the model with both the cause of death text string, 

the almost completed code, as well as a list of possible subgroups that the model is then 

asked to choose between; this is an approach  similar to Boyle et al.’s “meta-refinement 

of predicted codes”. 

 Another promising solution is Retrieval-Augmented Generation (RAG) [39, 40]. 

RAG is an AI framework that can improve LLM responses by grounding the model on 

external knowledge bases that the users supply. Using RAG, we would be able to use 



the ICD-10h master list of terms and codes as a knowledge base, and when prompting 

an LLM to classify a cause of death into an ICD-10h code, it would first retrieve infor-

mation from the knowledge base before responding. This would increase the probabil-

ity of getting a correct response and it would give the users a source for the answer. 

4.4 Limitations 

We intended to use LLMs for assigning ICD-10h codes to the causes of death, as it is 

tailored for historical terms, but resorted to standard ICD-10 codes due to the ICD-10h's 

unavailability online, potentially affecting the number of full matches. However, ICD-

10h codes have an additional two digits which might have also increased error risks. 

Furthermore, the LLMs' tendency to align with the ICD-10-CM billing system, despite 

instructions to avoid it, contributed to the low full match count. 

We provided models with original cause of death text strings, which often includes 

several diseases and/or injuries that the individual was suffering from at the time of 

death, instructing them to return an ICD-10 code for each. Our analysis compared the 

first code from the models to the first in our manual dataset, as different causes are not 

often easy to distinguish. The LLMs may have focused on the true underlying cause 

mentioned later in the text, as prompted, rather than the first listed condition. 

Another limitation is that the analysis was done on records of individual deaths, not 

on unique strings. This has the advantage of assessing how many deaths were likely to 

be correctly coded, but not necessarily how well particular commonly written strings 

were coded. Additionally, the dataset was skewed towards infant deaths. 

At the time of the experiment, a more powerful version of the Llama 2 model was 

trained on 70 billion parameters. However, we could not use this version of the model, 

as we did not have a powerful enough computer to run it. Hence, we were restricted to 

the 13 billion parameter model. This has most likely impacted the performance of 

Llama 2 reported on in this paper. 

5 Conclusion 

In this paper, we explored the use of Large Language Models (LLMs) to encode his-

torical causes of death data. We experimented with the current default versions (The 

experiments were run in early November 2023) of OpenAI’s GPT-3.5 and GPT-4 mod-

els, as well as Meta’s Llama 2, on a dataset covering the period 1861-1901 gathered 

from Ipswich, Kilmarnock, and the Isle of Skye in the UK. We found that no LLM 

performed this task satisfactorily, with GPT-4 achieving a correctness-score of 82.6% 

at the highest, but it was only able to correctly match the manual coding completely in 

57.9% of cases. We found that all LLMs achieved better results for causes of death 

where more current terms are used, than for archaic terms. They also performed better 

for causes of death that were composed of shorter text strings. We found that the models 

made more errors when given longer text strings, but that these errors had a high degree 

of agreement between models, meaning that the models all tended to make the same 

error.  
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 We compared the performance of the LLMs to both classical machine learning meth-

ods such as a random forest classifier and SVM, and a string similarity matching algo-

rithm. We found that while the LLMs performed much better than string similarity 

matching, they still perform worse than the machine learning methods.  

 It is important to keep in mind that these results reflect the use of LLMs that were 

trained to be chatbots with extensive general knowledge, rather than models that have 

been specifically pre-trained or fine-tuned with domain expertise in historical causes of 

death or the ICD-10 system. As such, we have chosen to treat these results as a baseline 

that we can use to compare with for future projects where we utilise fine-tuning or 

frameworks like Retrieval-Augmented Generation. We would not recommend using 

LLMs for similar tasks without these improvements.  
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