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Abstract. This paper overviews the challenges of using artificial
intelligence (AI) methods when building healthcare systems, as discussed
at the AIsola Conference in 2023. It focuses on the topics (i) medical
data, (ii) decision support, (iii) software engineering for AI-based health
systems, (iv) regulatory affairs as well as (v) privacy-preserving machine
learning and highlights the importance and challenges involved when
utilizing AI in healthcare systems.
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1 Introduction

Artificial intelligence has gained a lot of attention in previous years in various
domains like finance [52], education [31], human resources [112], healthcare
[93], etc. To a large part, this is due to the advances in machine learning,
especially in deep learning. Moreover, the success of large language models also
empowers new applications in various areas. In addition, the advances in huge
dedicated high-performance computers with enormous GPU power drive this
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field of computer science. While decades ago it was more the symbolic approaches
in artificial intelligence that were the driving force, it is now the sub-symbolic
approaches [38]. However, it may be expected that the combination of both
approaches yields solutions having the benefits of both techniques [14].

Healthcare is of great importance to society. It is also economically significant
and may become even more influential in the future due to an aging society [58].
Therefore, as expected, artificial intelligence techniques are finding their way into
the health domain. Healthcare affects humans’ lives and is a prime example of a
safety-critical domain [8,129,117]. Therefore, there are several challenges when
applying artificial intelligence to medical applications, ranging from medical care
and medicines to medical devices [116].

This paper gives a short overview of the discussions and contributions
presented and partially reflected in the subsequent chapters of the healthcare
track volume of the AIsola Conference 2023. The track consisted of six invited
presentations analyzing several challenges when applying artificial intelligence
techniques to healthcare applications. We summarize these presentations in the
subsequent sections and refer the reader to dedicated papers in this volume or
published elsewhere. In the track, we discussed the following challenges:

– medical data,
– decision support,
– software engineering in the healthcare domain,
– regulations when building medical devices and
– privacy in machine learning.

It should be stressed that the papers contained in this volume are interim
discussions of ongoing studies and not final results.

This paper is structured as follows: in the next section, we discuss the role of
health data in the medical domain, focusing on machine learning applications.
Section 3 gives a quick summary of challenges when building medical decision
support systems. Software engineering challenges for building medical devices
are sketched in Section 4. Regulatory requirements for building machine learning
applications for the health domain are explained in Section 5. Section 6 recalls
the privacy challenges in machine learning. Conclusions are drawn in Section 7.

2 Data Handling

A vast amount of data is generated in the healthcare domain regularly, and
it consists of diverse information such as admission records, medical histories,
diagnosis reports, laboratory test results, and treatment procedures from various
departments and clinics. AI has the potential to analyze this extensive dataset
and extract insightful information, such as comorbidity patterns, trends, and
correlations, which may play an important role in improving the service
quality of healthcare systems. Identifying recurring patterns within healthcare
processes is crucial for streamlining healthcare procedures and ultimately
improving patient outcomes. AI provides an opportunity to reduce the cost
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of healthcare by optimizing processes and maximizing resource utilization, as
well as providing better service quality by offering personalized treatments.
Effective implementation of AI in healthcare relies on various factors, including
data quality and availability; data interpretability and explainability; ethical
considerations and bias; AI model complexity and selection; scalability and
performance; data privacy and security; integration with existing systems;
user acceptance and adoption; and regulatory compliance. In the following
subsections, we present various types of healthcare data, their characteristics,
and various challenges in healthcare data collection, management, analysis, and
reporting.

2.1 Types of Healthcare Data

Healthcare data comes in various types and possess distinct characteristics. The
following are different types of healthcare data that possess distinct significance
for AI.

– Electronic Healthcare Records (EHRs)
– Clinical data
– Administrative data
– Genomics Data, e.g. DNA
– Patient-reported data, e.g., biological markers
– Health Behavior Data, e.g., diet, exercise, substance use
– Public Health Surveillance Data
– Research Data encompasses data
– Imaging and Diagnostic Data, e.g., X-rays, MRIs, CT scans
– Social Determinants of Health (SDOH), data encompasses factors outside

the healthcare system that influence health outcomes, such as socioeconomic
status, education, and environmental conditions

2.2 Characteristics of Healthcare Data

Healthcare data has several characteristics that distinguish it from data in other
domains.

– Complexity: Healthcare data involves a wide range of information related to
patient health, medical treatments, and administrative processes.

– Variability: Healthcare data exhibits variability in formats, structures, and
types. It includes structured data (e.g., databases), various kinds of images,
and unstructured data (e.g., free-text clinical notes).

– Volume: Healthcare data are often voluminous, with large datasets generated
from various sources, such as diagnostic tests, medical imaging, and
continuous monitoring.

– Velocity: Healthcare data is generated and updated in real-time. Continuous
monitoring, streaming data, and rapid updates contribute to high-velocity
data.
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– Variety: Healthcare data comes in diverse formats, including text, numerical
values, images, and signals. Integrating and analyzing these varied data types
is a challenge.

– Veracity: The accuracy and trustworthiness of healthcare data can vary.
– Privacy and Security: Healthcare data is sensitive and subject to strict

privacy regulations. Protecting patient confidentiality and ensuring data
security are paramount.

– Longitudinal: Healthcare data often span long periods, providing a
longitudinal view of a patient’s health history. This historical context is
crucial for comprehensive patient care.

– Inter-connectedness: Different healthcare data elements are interconnected.
Patient records, diagnoses, medications, and treatments are linked to provide
a holistic view of care.

– Context Dependency: Healthcare data requires contextual understanding.
Clinical data interpretation often depends on the medical context and the
patient’s history.

– Regulatory Compliance: Healthcare data should comply with regulatory
frameworks to protect patient rights and privacy, such as compliance with
HIPAA, GDPR, and other data protection laws.

– Multidimensional: Healthcare data are often multidimensional, involving
data from various sources and aspects of patient care, including clinical,
financial, and operational dimensions.

2.3 Challenges of Healthcare Data

Addressing the challenges of healthcare data is pivotal for advancing the quality
and effectiveness of healthcare services. Several vital challenges emerge as we
delve into the intricacies of managing healthcare data. Figure 1 outlines different
healthcare data collection, management, analysis, and reporting challenges.

Interoperability: There is a need for standardized interoperability to
ensure the seamless exchange of healthcare data between different systems
and providers. Common data standards and interoperability frameworks are
necessary to facilitate better care coordination and enhance data sharing for
research purposes. Even though there exist several healthcare ontologies, e.g.,
ICD-10 [84] and SNOMED-CT [30], the healthcare dataset often consists
of unstructured data. Image processing and Natural Language Processing
(NLP) may play an important role in extracting structured information
from unstructured information. However, there are still many challenges as
the state-of-the-art technique for image processing, and NLP could provide
inaccurate results.

Data Quality and Accuracy: Maintaining data quality and accuracy is
challenging due to errors in data entry, variations in documentation practices,
and evolving standards. Implementing data validation processes and quality
assurance measures are essential to ensure the reliability of healthcare data.
Adopting cutting-edge techniques such as machine learning algorithms for
anomaly detection [120,57], natural language processing for semantic validation
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Fig. 1. Challenges in healthcare data collection, management, analysis and reporting

[64,100], and blockchain technology for immutable data records [106,104] can
strengthen data validation processes and quality assurance measures, thereby
enhancing the reliability and integrity of healthcare data.

Bias and Fairness: Ethical and responsible AI practices are paramount
when implementing AI methods in the healthcare domain. Quality of data
is essential for the application of AI. Bias in data poses a significant risk
to the development of responsible AI. Systems trained on biased data may
produce inaccurate and harmful predictions. This bias is particularly concerning
when it affects individuals from specific demographic groups. Advanced
methodologies such as adversarial de-biasing [127,128], fairness-aware learning
[68,126], and counterfactual fairness [124,131] are pivotal for promoting fairness
and mitigating bias in AI healthcare applications.

In this volume, the contribution Towards a Multi-dimensional Health Data
Analysis Framework by Rabbi et al. [92] studies a framework for analyzing health
data.

3 Tests vs. learning from massive data sets

The dichotomy between traditional testing methods and learning from massive
data sets through Artificial Intelligence (AI) presents a compelling discourse
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in healthcare. Traditional testing methods in healthcare often suffer from
limitations such as time inefficiency, capacity, human resources, and practicality.

In healthcare, traditional testing refers to the conventional medical testing
methods that have been used for years. These methods typically involve a
multi-step process that includes collecting samples from the patient at the
bedside or the clinic, transporting the samples to a centralized laboratory
(often located far away), and then subjecting them to several processing steps.
Examples of traditional tests include blood tests, urine tests, and tissue biopsies,
among others. These tests are usually performed in a laboratory by trained
professionals, and the results are returned to the healthcare provider. This
process can take some time, which can delay treatment [51,66].

In contrast, point-of-care testing is a more modern approach where tests
are conducted close to the site of patient care, providing a rapid turnaround of
test results. This can lead to improved clinical or economic outcomes compared
to traditional laboratory testing [51,66]. Examples of point-of-care tests include
blood glucose monitoring and home pregnancy tests [82]. Traditional testing and
point-of-care testing play crucial roles in healthcare, each with its own strengths
and limitations [51]. However, advances in ICT can also add to and enhance
current medical testing processes.

With its capacity to learn from massive data, AI offers unprecedented
opportunities for predictive analytics, pattern recognition, and decision-making
support. Rule-based AI algorithms [28], machine learning [25], and deep learning
algorithms [20] have been applied to healthcare with good results in terms of
algorithmic accuracy, often even outperforming humans in diagnosing illnesses or
predicting outcomes of treatment trajectories. However, the rise of AI in medicine
also brings challenges regarding data privacy, algorithmic transparency, and
validation of AI models. With increasing use, AI systems in healthcare are also
increasingly targeted by cyber attacks [18]. Therefore, an optimal approach may
lie in integrating both methodologies, leveraging the robustness of traditional
tests and the innovative potential of AI to drive a new era of precision medicine
and personalized healthcare. This approach necessitates rigorous regulatory
frameworks to ensure the ethical and responsible use of data and continuous
evaluation to maintain the accuracy and reliability of AI systems. Thus, the
interplay between tests and learning from massive data through AI is not a
competition but rather a symbiotic relationship that could redefine the future
of healthcare.

Besides its potential, AI in healthcare still suffers from low adoption rates
[27]. Even large tech companies like IBM with Watson for Healthcare failed to
deliver on the promise of revolutionizing healthcare with AI [110]. The reasons
for that were a missing interdisciplinary approach between IT researchers and
healthcare professionals [22] and the complexity, quality, and large quantity of
data needed for training algorithms [21]. Those factors could have also led to
a bias in the good research results of machine and deep learning algorithms,
especially because most published deep learning research in healthcare is only
based on small datasets [23,26,21].
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In conclusion, the healthcare industry stands at a crossroad between
traditional testing methods and the innovative potential of AI. The integration
of AI into healthcare represents a transformative shift from traditional
methodologies. While traditional testing has been the backbone of medical
diagnostics for decades, it is encumbered by efficiency, capacity, and resource
allocation constraints. Point-of-care testing has emerged as a viable alternative,
offering rapid results and the potential for better clinical outcomes. However,
the true paradigm shift lies in the application of AI, which provides a
level of predictive analytics, pattern recognition, and decision-making support
previously unattainable through its ability to analyze vast data sets. This fusion
of AI with traditional and point-of-care testing methods does not diminish the
value of either; instead, it augments the healthcare ecosystem, creating a more
robust, responsive, and efficient framework for patient care. We see the future of
healthcare testing as one that harmonizes the reliability of traditional methods
with the agility of point-of-care solutions and the innovative prowess of AI,
paving the way for a more proactive and patient-centric approach to medical
diagnostics. Despite this potential, the reliance on small data sets in AI research
poses a risk of bias, and the lack of robust Randomized Controlled Trials (RCTs)
to validate AI’s efficacy is a significant gap in the literature. Moving forward, the
healthcare sector must embrace a balanced approach that leverages the strengths
of traditional and AI-driven testing methods while also addressing the challenges
of data representativeness and empirical validation challenges. Only through such
a comprehensive strategy can we ensure the delivery of efficient, accurate, and
equitable healthcare services.

Note that this section presents a summary of research on Systematic AI
Support described in detail in [19]. In this volume, the contribution Future
Opportunities for Systematic AI Support in Healthcare by Bertl et al. [24] studies
further opportunities for using AI in healthcare.

4 Software Engineering for Developing AI-intensive
Healthcare Systems: Opportunities and Challenges

Integrating Artificial Intelligence (AI) in healthcare systems is related to
the expectation to transform medicine [72], including economic and viability
considerations of Disruption, Discontinuity and Differentiation (3-D-Model) [96].
It offers unprecedented opportunities to enhance patient care outcomes [50,121]
by fostering personalized care that leads to continuity of care [39] and active and
healthy longevity. These opportunities can be summarized as follows:

– Personalized Medicine: AI’s capability to analyze vast datasets enables
the development of personalized treatment plans [50]. By considering an
individual’s genetic predisposition, lifestyle, and environmental factors [111],
AI may help physicians predict the most effective evidence-based treatments,
hopefully reducing medication errors and therapy selections [4].

– Predictive Analytics: AI algorithms can identify patterns and predict
outbreaks of diseases [113], helping public health officers plan proactive
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healthcare measures [122]. For example, machine learning models can
forecast the spread of infectious diseases by analyzing data from various
sources, including social media, citizens’ mobility patterns, and climate
changes, probably enabling more timely interventions [56].

– Enhanced Diagnostic Accuracy: AI has demonstrated superior performance
in diagnosing diseases using medical image processing [69]. Deep learning
models, trained on thousands of images, may help medical specialists detect
anomalies such as tumors [36] and fractures [123], often with higher accuracy
and speed than human experts alone can do, leading to earlier treatment and
better outcomes [63,5].

– Operational Efficiency: AI may help physicians streamline healthcare
operations, reducing the burden on healthcare professionals and improving
patient care [130]. From scheduling appointments to managing patient flow
and automating administrative tasks, AI can significantly enhance efficiency
in healthcare settings [80].

– Bridging the Accessibility Gap: AI-powered telemedicine and mobile health
applications can deliver healthcare services to remote and underserved
populations [29]. By reducing geographical barriers, AI has the potential
to democratize access to healthcare services, making it possible for more
individuals to receive timely and appropriate care [85].

4.1 Challenges

However, robust, efficient, and ethical AI-intensive healthcare systems bring with
them and amplify complex challenges for software engineers who engineer such
systems [44]. We summarize these challenges as follows:

– Data Privacy and Security: The backbone of AI in healthcare is data, which
often includes sensitive personal information [125]. Ensuring the privacy and
security of this data is paramount, requiring robust encryption methods,
secure data-sharing protocols, and compliance with regulations [37] such as
HIPAA (Health Insurance Portability and Accountability Act) in the United
States and GDPR in the EU.

– Bias and Ethical Concerns: AI systems are only as unbiased as the data they
are trained on [83]. If the training data is skewed, the AI’s decisions may be
as well, potentially leading to unequal treatment outcomes among different
demographic groups [102]. Addressing these biases and ensuring ethical
considerations are integrated into AI systems is a complex challenge [71].

– Interoperability: Healthcare data is fragmented across various systems and
formats, making it difficult to aggregate and analyze comprehensively [67].
Software engineers must tackle the interoperability challenge to enable
seamless data exchange and semantic integration [46,10,43], ensuring AI
systems can leverage diverse data sources for comprehensive analysis [105].
A further complexity dimension is that data is often processed while the
representation format remains the same (e.g. TIFF files). So semantics has
also the role of a refinement of the concept of type, captured for example
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through semantic data types in [65] and [35]. Also this needs to be included
in the scope of AI tools.

– Regulatory Compliance: Navigating the regulatory landscape in the medical
domain is challenging [103]. AI-based healthcare systems must comply with
many regulations governing medical devices and patient data [88,47,15].
Ensuring these systems are effective and legally compliant requires a deep
understanding of both technological and regulatory domains.

– Trust and Adoption: Building trust among healthcare professionals and
patients is crucial for adopting AI-based systems [42,12]. This involves
demonstrating AI interventions’ reliability, safety, and efficacy [98,70].
Software engineers must work closely with healthcare professionals to design
systems that complement clinical workflows, enhancing rather than replacing
human judgment [55].

Therefore, integrating AI into healthcare systems offers a promising avenue
for enhancing healthcare delivery, making personalized medicine a reality, and
improving access to care. However, the journey is fraught with challenges
ranging from data privacy and bias to regulatory hurdles and the need for
interoperability.

4.2 Opportunities

As software engineering continues to evolve in response to these challenges,
the collaboration between software engineers, healthcare professionals, and
policymakers will be critical [9]. By navigating these complexities, we can
harness the full potential of AI in healthcare, ensuring that it serves as a
tool for equitable, efficient, and effective patient care. Therefore, we summarize
the following possible opportunities in software engineering for developing
AI-intensive healthcare systems:

– Advanced Tool Development: There’s a growing demand for sophisticated
tools to manage and analyze health data at scale [17,115] as well as
recommender systems to manage imbalance [107]. Software engineers have
the opportunity to develop and refine platforms that facilitate the training
of AI models on vast datasets, including electronic health records, imaging
data [32], diagnostics [101], health information [34] and genomics [41].
These tools must be powerful in terms of computational capabilities and
user-friendly for healthcare professionals.

– Interoperability Solutions: One of the significant opportunities lies in creating
solutions that ensure seamless semantic interoperability among diverse
healthcare systems [90,108,94], including considerations of simplicity [95]
in times of disruption. By engineering advanced APIs and data exchange
protocols, software engineers can enable different systems to communicate
effectively, enhancing data sharing and collaboration across the healthcare
sector. This impacts also the availability and interoperability of data for
long-lived interdisciplinary research [74].
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– Data Privacy and Security Innovations: With the sensitivity of healthcare
data, there’s an urgent need for innovative solutions that protect patient
information as data breaches [7,81] harm the trust and privacy. Architectural
solutions that enforce privacy [6] and blockchain-based privacy enhancing
technologies have been proposed [54]. Software engineers are at the forefront
of designing encryption methods, secure data storage solutions [60,61,62],
and privacy-preserving algorithms, ensuring that AI-based systems adhere
to strict data protection standards.

– Scalable Infrastructure: Developing AI models requires significant
computational resources. There is a tremendous opportunity for software
engineers to build scalable infrastructures [53,13] that can support the
development and deployment of AI models, making advanced healthcare
analytics accessible to institutions of all sizes.

4.3 AI-Intensive Healthcare Systems

However, those opportunities for software engineers are in harmony with the
complex challenges that software engineers face in developing software and
systems for AI-intensive healthcare systems. We summarize some of these
challenges as follows:

– Managing Complex Data: Healthcare data is notoriously complex,
heterogeneous, and voluminous [2,3,114,67]. Software engineers face the
challenge of creating systems capable of handling this complexity, including
different data formats, incomplete datasets, and the integration of real-time
data streams, all while maintaining high performance. An example is in [33],
where the sheer size of TIFF files for highly-plexed tissue image analysis
required an extension to the underlying platform.

– Ensuring Model Explainability: AI models, especially deep learning, are
often seen as “black boxes” due to their complex nature [11]. Developing
methodologies and tools that enhance the transparency and explainability
of these models is a significant challenge but essential for gaining trust
among healthcare providers and patients [97]. Alternatively, one can use
different ML techniques, where explainability can be supported by formal
methods [48,49].

– Addressing Bias and Fairness: Data bias is a critical issue that can lead to
skewed AI predictions [118]. Software engineers must devise strategies for
identifying and mitigating bias in training datasets and algorithms, ensuring
that AI-intensive healthcare solutions are fair and equitable [12,42,97].

– Navigating Regulatory Landscapes: The healthcare industry is heavily
regulated, and AI-intensive systems must comply with many regulations and
standards [47,103]. Software engineers must stay abreast of these evolving
requirements, integrating compliance into the software engineering life-cycle,
which can be complex and time-consuming.

– Integration with Existing Healthcare IT Ecosystems: Integrating AI solutions
into existing IT infrastructures without disrupting clinical workflows
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represents a significant challenge [40]. Software engineers must design AI
systems that are not only interoperable [99,91] but also align with the needs
and processes of healthcare professionals, ensuring smooth deployment,
adoption, and effective use.

Integrating AI into healthcare systems offers software engineers an
opportunity-rich ground for innovation, with substantial opportunities to
impact patient care positively. The combination with model driven development
of software systems, including the current push towards Low-Code/No-Code
can be a help. Here, approaches based on eXtreme Model Driven Development
(XMDD) [78,79], based on a Digital Thread approach [76,73] and enriched
by formal methods [75,77] have proven useful in many areas including
cyberphysical systems, which has direct application to medical devices and
Health IoT. However, the path is full of complex technical, ethical, and
regulatory challenges that require thoughtful navigation. By addressing these
challenges head-on and leveraging the opportunities, software engineers can
play a pivotal role in shaping the future of healthcare, making it more accurate,
efficient, and accessible for all by supporting transformation in medicine for
enhanced patient care outcomes and personalized and continuity of care towards
the active and healthy longevity of citizens.

In this volume, the contribution Model Driven Development for AI-based
Healthcare Systems: A Review by Colm Brandon, Amandeep Singh and Tiziana
Margaria [35] reviews four case studies that illustrate different quadrants in
the bidimensional space of AI/ML and advanced model driven development,
specifically in a low-code/no code fashion.

5 Regulatory Affairs

Manufacturers of Medical Devices (MD) and Software as a Medical Device
(SaMD) encounter a variety of challenges when aligning with regulatory
standards, both in the US under FDA regulations and in the EU under the
Medical Device Regulation (MDR) [59]. These challenges are compounded by
technology’s dynamic and evolving nature, particularly in AI and machine
learning. The US Food and Drug Administration (FDA) has a comprehensive
set of regulations and guidelines for medical devices, which include detailed
requirements for the safety, efficacy, and quality of these products. These
regulations ensure that medical devices are safe for patients and effective in their
intended use. The FDA’s approach to regulation is comprehensive, covering every
stage of a medical device’s life cycle, from design and development to post-market
surveillance. The Medical Device Regulation (MDR) plays a similar role in
the European Union. The MDR sets stringent standards for medical devices,
focusing on safety and performance. It emphasizes the importance of clinical
evaluation and post-market surveillance, ensuring that medical devices meet high
standards throughout their life cycle. Both sets of regulations demand rigorous
risk management like ISO 14971, testing and validation processes, extensive
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documentation, and adherence to quality management systems, especially one
compliant with standards like ISO 13485 [86]. The complexities in these
regulatory landscapes arise from the need to balance technological innovation
with patient safety and product efficacy.

The task is further complicated by the evolving nature of Artificial
Intelligence (AI) and Machine Learning (ML) in medical devices, which
challenges traditional models of software change management and regulatory
compliance [89]. We highlight how the adaptive capabilities of ML tasks challenge
traditional software change management. Unlike conventional software, ML
systems, especially those engaged in continual learning, where an ML can
autonomously evolve their algorithms based on new data, blurring the lines
of standard change control practices. This autonomous evolution poses unique
regulatory challenges, as it may not fit within established frameworks that expect
static, well-tested software versions before market release. Understanding and
navigating these nuances is crucial for regulatory compliance in the ML-driven
landscape of medical technology.

One approach to support evolving software for medical devices is to anticipate
or predetermine the system’s evolution and to foresee to which extent these
changes do not affect the safety of the medical device. The FDA introduced
a so-called Predetermined Change Control Plan (PCCP) [119], in which
anticipated changes are described and evaluated according to their impact on
the medical device. If the impact is moderate, the FDA may approve such
evolving systems. However, the systematic identification of potential changes
in the software and their criticality assessment is difficult. To support this
complex task of identifying and documenting the development and potential
changes, we introduce the CRISP-PCCP as a methodology for developing
AI/ML-enabled medical devices in the context of FDA approval. CRISP-PCCP
facilitates the identification of potential changes in AI/ML processes and ensures
that these changes are compliant and safe. It aims to streamline the development
process, focusing on quality assurance and effective project management in the
complex area of medical device regulations. This makes it an important tool for
manufacturers seeking FDA approval for AI/ML-enabled medical devices.

In this volume, the contribution CRISP-PCCP – A Development Methodology
Supporting FDA Approval for Machine Learning Enabled Medical Devices by
Pechmann et al. [87] explains the CRISP-PCCP approach in detail.

6 Privacy-challenges in Machine Learning

Learning predictive machine learning (ML) models from patient data and similar
medical applications requires a particularly careful treatment of the patient data.
Recent work in ML security has illustrated that using classical learning methods
can lead to models that leak information about the training data, i.e., the patient
data [45]. A classical countermeasure against data leakage has been to sanitize
the patient data before using it, e.g., via methods that achieve k-anonymity.
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Yet, data sanitization has been shown to be ineffective against deanonymization
attacks [109].

Consequently, modern methods for protecting yet learning from patient data
rely on data aggregation, which is what many machine learning methods are
based on [1]. By solely using the patient data in aggregated statistics (e.g., the
mean of gradients), the impact of single data points is limited. Furthermore,
adding random noise to these statistics can prevent partial deidentification
attacks. The state-of-the-art definition used to prove that no deanonymization
attack is possible against a given data processing algorithm is differential privacy.

Differentially private ML algorithms aim to protect single data points yet
try to preserve an acceptable degree of usefulness, e.g., classification accuracy.
For many differentially private ML algorithms, the degree of usefulness increases
with increasing data points, which in medical applications translates to patients
in a study. The same studies can be conducted at several medical institutions
to maximize the number of patients in a study. To ensure that no party has to
collect all patient data centrally, so-called secure distributed learning algorithms
have been developed.

Secure distributed learning algorithms [16] ensure that no party leaks
their locally collected data while each party can contribute their data to
a joint learning protocol. Secure distributed learning algorithms aim to
achieve performance similar to classical learning algorithms, where the data is
centrally collected. Secure differentially private distributed learning algorithms
additionally ensure that the result of the learning, the resulting ML model, does
not leak information about the training data, i.e., the patient data.

7 Conclusion

In AI’s integration into healthcare, a domain that directly impacts human
well-being and is a complex, data-rich environment, we face many opportunities
and challenges that probably impact the medical informatics future. This paper
summarizes contributions and discussions at the AIsola Conference 2023. It
explains opportunities where software engineering not only profits from the
advancement of healthcare through AI but also faces complex challenges inherent
in such a critical domain.

The promise of AI in healthcare is enormous, offering to revolutionize
patient care through personalized medicine, predictive analytics, and enhanced
diagnostic accuracy. The potential to streamline operational efficiencies, bridge
accessibility gaps, and ultimately improve patient care outcomes and quality
of life underscores a future where healthcare is accessible, effective, and more
evidence-based. Software engineers find themselves at the heart of translating
this potential into reality, developing the tools, systems, and algorithms that
empower AI-intensive healthcare.

Yet, the path to realizing this potential has diverse and significant challenges.
Data privacy and security are paramount concerns, reflecting the sensitive nature
of healthcare information and the imperative to protect patient confidentiality in
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an increasingly digital world. AI systems’ possible bias and ethical considerations
further complicate the landscape, raising questions about equity and fairness in
healthcare outcomes. Interoperability, regulatory compliance, and integrating AI
systems into existing healthcare infrastructures present complex technical and
bureaucratic issues that require understanding and innovative solutions.

In addressing these challenges, software engineering is not just a technical
endeavor but a multidisciplinary one, demanding a synthesis of healthcare,
ethics, law, and beyond expertise. It requires a balance between innovation
and caution, pushing the boundaries of what is possible with AI while ensuring
the developed systems’ safety, reliability, and fairness. The collaborative effort
between software engineers, healthcare professionals, policymakers, and patients
is crucial in facing the medical informatics domain’s ethical, legal, and technical
complexities.

The opportunities for software engineering in developing AI-intensive
healthcare systems are vast, ranging from advanced tool development
and interoperability solutions to innovations in data privacy and scalable
infrastructure. Each opportunity enhances healthcare systems’ capabilities and
opens new avenues for research, development, and application in an ever-evolving
field. The challenges prompt reevaluating traditional approaches and encourage
a critically creative forward-thinking mindset.

As we look to the future, the convergence of AI and healthcare mediated
through software engineering will probably lead to a transformative change in
medicine. Yet, this convergence also requires a thoughtful approach considering
healthcare’s ethical, social, and technical facets. By embracing the opportunities
and addressing the challenges, software engineering stands to play a pivotal role
in shaping a future where AI not only enhances healthcare but does so in a
manner that is equitable, secure, and deeply attuned to the democratic values
of society. In this endeavor, the lessons learned and the strategies developed
will benefit healthcare and offer valuable insights for applying AI across other
domains, reflecting the broader implications of this work for society at large.
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