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2 Dependable Systems Group, Kiel University, Kiel, Germany

3 Institute for Electrical Engineering in Medicine, University of Lübeck, Lübeck,
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Abstract. The U.S. Food and Drug Administration (FDA) is the
regulatory body that ensures the safety, efficacy, and security of medical
devices and software in the healthcare sector in the U.S. However, its
guidelines and regulations often set a global benchmark, influencing
medical device standards in Europe and other regions. The FDA recently
published a draft guidance, the Predetermined Change Control Plan
(PCCP), aiming to support medical device manufacturers with the
release of continual learning Machine Learning-Enabled Device Software
Functions (ML-DSF). Such ML-DSFs are intended to change after
initial market approval. We present a systematic process to support
the implementation of the PCCP. Building upon the Cross-Industry
Standard Process for the development of Machine Learning applications
with Quality assurance methodology (CRISP-ML(Q)), we present an
approach that a manufacturer may use to identify and evaluate the
impact of anticipated changes to ML-DSF. Our process also indicates
a forecast, whether the anticipated change would be accepted by the
FDA as a part of the PCCP.

Keywords: FDA, Predetermined Change Control Plan (PCCP), CRISP-
ML(Q), Machine Learning-Enabled Device Software Function (ML-DSF)

1 Introduction

Medical devices are safety critical systems that are typically subject to strict
regulatory restrictions. In the U.S., these are imposed by the Food and Drug
Administration (FDA), which approves the medical product prior to market
release. As part of this, software functions of such systems need sophisticated
testing. Depending on the change of software after market approval, a re-
approval becomes necessary. In the EU, the Medical Device Regulation (MDR) is
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mandatory and defines a rigorous certification process. However, for this paper,
we concentrate on the development of the FDA.

Today, more and more such software functions are developed using machine
learning techniques. Often, such learning Machine Learning-Enabled Device
Software Functions (ML-DSF) are developed iteratively, meaning software
changes are continually applied, either by manually triggered re-learning of
functions or improving the system automatically whenever new data is available.

ML applications that do not change after market approval can be approved
under current FDA regulations. However, any manual update would require
re-approval. Systems that update automatically could not even get approval.
This is because continually learning systems may adapt to changes in the
environment or input on their own. Such a system would change dynamically
without manufacturer supervision after initial FDA approval. As a result, the
device in its updated state no longer conforms to what was originally tested
and approved. This is contrary to current regulations, which require that any
medical device is used in its approved form, with no subsequent changes that
could affect its functionality. However, this hinders the usage of the benefits
of continual learning systems which may improve their quality in a continual
fashion.

To address this problem, the FDA initiated discussions with corresponding
stakeholders and proposed a draft guidance to support the use of continual
learning machine learning software as medical devices, hereby assisting medical
device manufacturers with the development and the approval process of such
systems. The most recent guidance is the Predetermined Change Control
Plan (PCCP)[27]. Briefly explained, the FDA expects the medical device
manufacturers to state at application for initial approval, what changes to the
Machine Learning-Enabled Device Software Function (ML-DSF) are expected
to occur during the lifetime of the medical device and how this change would
affect the overall device. The anticipated changes are compiled into the PCCP.
It is emphasized that the FDA expects to define the PCCP at initial approval,
potentially long before the expected changes may occur. The intention is that
if an acceptable anticipated change occurs and the manufacturer acts according
to what he or she stated in the PCCP, a modification to the ML part of the
ML-DSF may be distributed without requiring re-approval by the FDA [27].
Otherwise, that is if a change has not been anticipated, or if the steps to address
the changes turn out to be not suitable or sufficient, a completely new approval
by the FDA may be needed. Note that in this case, distributing the modified
medical device would constitute adulteration and misbranding.

To support the development of PCCP, this paper proposes CRISP-PCCP as
a new methodology to systematically identify effects and implications of changes
during the release process of an ML-DSF. It is inspired by the Cross-Industry
Standard Process for the development of Machine Learning applications with
Quality assurance methodology (CRISP-ML(Q)) [19]. In simple words, CRISP-
PCCP consists of several steps that are iterated. The first step of CRISP-PCCP
is to provide a sufficiently precise description of the anticipated device change.
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Next, one must walk through the phases and sub-phases (generic tasks) of an ML
processing pipeline and determine for each generic task, whether it is affected
by the anticipated device change. If so, additional generic questions for further
details must be answered. In this way, a deeper understanding of the potential
changes is obtained, and a subsequent risk re-evaluation must be performed to
determine their potential impact on the overall system safety, effectiveness, and
compliance with regulatory standards. This last step is called the change impact
analysis. Following the proposed methodology not only sharpens the conception
of the anticipated device change and its consequences, but also provides an
estimation of whether an anticipated device change will be accepted by the
FDA as part of the PCCP.

The rest of the paper is organized as follows: In Section 2, the increasing
importance of continuously learning AI/ML products is highlighted and the
need for a forward-looking change control plan for AI/ML models in the medical
device industry is underlined. Then we continue in Section 3 with a brief overview
of the regulatory context. In Section 4 we describe the process, which uses the
CRISP-ML(Q) as its foundation: The risk-based approach for manufacturer
to identify changes along the ML life cycle and to predetermine their impact
during field usage. Further we estimate FDA acceptance within each phase of
the process. Finally, we discuss our experience and findings with the development
and usage of the approach on real world projects in Section 5 and conclude with
steps to improve the approach in Section 6.

2 Machine Learning in Medical Devices

Machine Learning (ML) is an area of computer science dedicated to developing
systems that can execute tasks usually associated with cognitive processes.
ML systems can analyze data, recognize patterns, make decisions, and adapt
to evolving situations without explicit programming. Within the medical
domain, ML has transformed medicine by enhancing diagnostics, personalizing
treatments, streamlining drug discovery, and enabling predictive analytic [11].
However, it also presents challenges related to data privacy, regulation, and
ethical use [14,2]. The ethical issues referred to include concerns about bias and
fairness in ML algorithms. Bias can occur when an ML system generates skewed
or prejudiced results due to flawed assumptions in the algorithm or biased data
inputs. This in turn can lead to unfair treatment of individuals or groups [14].

In comparison to classical V-Model driven software development, where
requirements engineering and testing are typically performed at well-defined
stages in sequence [9], the development of ML models is performed slightly
different. The typical ML development process involves developing a model that
is taken through a series of iterative steps that require constant adaptation
and learning as the model interacts with data. At the center of this process
are the ML algorithms that serve as a blueprint and dictate how the system
should achieve its goal. The model acts as an instance of the algorithm and
dynamically adapts through training iterations to approximate a target function
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that is initially unknown5. This iterative nature of development and focus on
adapting models through learning makes the traditional software development
life cycle less suitable to the nuanced and evolving landscape of ML development.
[5,13]

ML approaches may be distinguished whether they are static or continual: A
static model is trained offline. The model will be trained till it reaches a defined
goal in predicting certain features. After the training phase, the model will be
used without further changes. However, static models often perform well on
similar data but could perform poorly in scenarios that are rare in the training
process. Also, they prevent the ability to learn from post-approval, real-world
data, and thus cannot improve over time in the same way as adaptive systems.

Dynamic models, also known as continual learning ML models, are trained
online. The model will also be trained till it reaches a defined goal in predicting
certain features. But after the training phase, the data that is continually
processed by the system, is also used to update the model [28]. Continual
learning ML algorithms are designed to update and improve themselves as
their input data, environments, and/or targets change. This ability to adapt
to changing data has the potential to create more advanced Machine Learning-
Enabled Device Software Function (ML-DSF) that would allow to improve the
performance [28,15].

However, it poses risks that need to be addressed, such as the introduction of
new errors, system performance deterioration, if the newly integrated data are
biased, and the risk that new information could interfere with what the model
has already learned. Therefore, it is important to carefully manage and monitor
these systems [28,15].

In addition, ML-DSF with continuously learning abilities would result in an
unknown and undocumented version of the medical device software. This would
lead to an illegal product under the current regulations. The FDA has recognized
this issue and is actively addressing it within their “Proposed Regulatory
Framework for Modifications to Artificial Intelligence/Machine Learning (ML)-
Based Software as a Medical Device [23]”. This framework aims to create a clear
pathway for ML-DSF that are subject to continuously learning and adaptation,
allowing them to improve over time while ensuring patient safety and device
effectiveness.

3 Regulatory Context - Approval of Medical Devices

In the United States, the Food and Drug Administration (FDA) serves as
the regulatory authority responsible for overseeing Food, Pharmaceuticals, and
Medical Devices (MD). Its primary mission is to guarantee that these products
adhere to the highest standards of safety, effectiveness, and quality before they
enter the market. The FDA achieves this through rigorous and comprehensive
regulations designed to safeguard consumers’ health and well-being.

5 This is the essence of machine learning (ML)
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The FDA defines a medical device as any product, including accessories,
intended for diagnosing, curing, treating, or preventing diseases in people or
animals [25]. It covers a vast range of items, from simple tools like bedpans
to complex technologies like pacemakers. These devices work primarily through
physical or mechanical means, rather than chemical action, and are classified
based on their intended use and the level of risk they pose.

The FDA employs three key processes for approving Medical Devices (MDs)
to meet quality and safety standards. The 510(k) Process is the most common
one and used for devices that are substantially equivalent to an approved
one. For manufacturers, it suffices to give details showing that their medical
device is in substantial equivalence with a previously cleared (approved) one.
The De Novo Classification Process is for innovative MDs without an existing
comparable device. Here, manufacturers request a new classification by providing
unique device evidence for FDA review. The Pre-market Approval (PMA)
Process, which is for high-risk MDs, requires extensive data and a clinical
study demonstrating clinical benefits. The FDA reviews this to ensure safety
and efficacy. These processes are risk-based, with regulatory scrutiny varying
according to each MD’s risk level.

3.1 Change-management for Software in Medical Devices

The FDA regulatory frameworks lay out guidelines for managing software
changes in MDs to ensure the continued safety and effectiveness of these devices.
The FDA emphasizes the importance of effective change control procedures e.g.
for software changes [26]. The types of changes differ based on their impact on
the device’s safety and effectiveness.

Minor changes typically have a low impact on the device’s safety and
effectiveness. Manufacturers can implement these changes without prior FDA
approval but must notify the FDA within 30 days of making the change. This
type of change encompasses modifications to labeling or bugfixes in the medical
device software.

Moderate changes have a more significant impact on the device’s safety
or effectiveness. Manufacturers are generally required to submit a new 510(k)
submission or a PMA supplement for these changes, seeking FDA clearance
before implementing them. The FDA will review the submission to ensure that
the modifications do not compromise the device’s safety and efficacy. This type
of change encompasses modifications to design or functionality which could affect
the medical device software’s performance.

Major changes have the potential to significantly affect the safety and
effectiveness of the device. Manufacturers typically need to submit a new 510(k)
submission or a PMA supplement to the FDA for approval before implementing
these changes. The FDA’s review process for PMAs is more rigorous and involves
a comprehensive assessment of the new information to ensure that the modified
device continues to meet regulatory standards. In cases where a device that
was originally cleared through a 510(k) process undergoes significant changes
that might push it into a higher risk category or significantly alter its intended
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use, the FDA may require a new PMA application instead of just a new 510(k)
submission. This would typically be the case if the changes affect the fundamental
technological characteristics or the safety and effectiveness of the device, thereby
necessitating a more comprehensive review than what is covered under the 510(k)
process. However, simply submitting a PMA supplement for a system that was
approved via a 510(k) is not a typical pathway. The decision to require a PMA,
instead of another 510(k) submission, is based on the nature of the changes and
the potential risks associated with them.

Alterations to the fundamental design or intended use of an MD may be
considered significant changes. These changes often require thorough evaluation
and may necessitate updated clinical evidence. Changes to software, including
updates, bug fixes, or enhancements, are relevant for MDs with software
components. The regulations require careful consideration of the potential
impact on safety and performance. It is crucial for manufacturers to thoroughly
assess and document these changes in accordance with the requirements.
Depending on the nature and impact of the change, manufacturers may need
to update their technical documentation, conduct additional testing, or even
perform a re-approval.

3.2 Predetermined Change Control Plan for Machine
Learning-Enabled Device Software Function

The change management described above must also be applied to ML-DSF. This
leads to the fact that only static ML models would be accepted by the FDA for
approval as continual learning would lead to a modification of the approved MD,
resulting in a loss of approval. Manufacturers would be forced to re-validate their
devices each time the continual learning ML-DSF would adapt the ML model.

The FDA recognized this as a problem and stated the “Marketing Submission
Recommendations for a Predetermined Change Control Plan for Artificial
Intelligence/Machine Learning (AI/ML)-Enabled Device Software Functions”
early 2023 [27]. In that recommendation, the FDA renders the PCCP as “the
documentation describing what modifications will be made to the ML-DSF and
how the modifications will be assessed”. Thus, the FDA requests manufacturers
to identify and assess the anticipated changes to their ML-DSF in a PCCP,
which will be submitted during the approval process. If the PCCP states that the
assessment of the anticipated change has no impact on the general performance
or safety of the MD, then the FDA is likely to approve the continual learning-
enabled MD. If the ML-DSF changes as defined in the PCCP, the device’s
approval persists without the need for re-approval.

According to the FDA, the following modifications fall under the scope of the
PCCP: Modifications to an ML model which is “implemented automatically (i.e.,
for which the modifications are implemented automatically by software)” [27],
which does not explicitly involve continual learning but also would not exclude
this possibility, and, modifications to an ML model which is “implemented
manually (i.e., involving steps that require human input, action, review, and/or
decision-making, and therefore are not implemented automatically)” [27].
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It is the manufacturer’s responsibility to ensure that the changes are
indeed following the PCCP. When conformance with the PCCP is erroneously
assumed, the approval of the system vanishes. As such, it is in the benefit
of the manufacturer to install monitoring means to ensure compliance with
all previously defined requirements, especially the PCCP. To this end,
manufacturers prepare Standard Operating Procedures (SOPs) that detail
the ongoing monitoring and evaluation processes for PCCP-approved medical
devices. These SOPs should outline how data on device performance, safety, and
efficacy will be collected and managed post-market, how risk management will
be conducted continuously, and how changes to the ML-DSF will be assessed
and documented. The SOPs must also specify the roles and responsibilities of
personnel involved in monitoring, the methods for reporting and communicating
findings, and the procedures for maintaining compliance with FDA regulations.
By implementing these SOPs, manufacturers can ensure that any modifications
to the ML-DSF remain within the approved scope and that the device continues
to meet safety and performance standards without requiring re-approval.

4 A CRISP-PCCP

We come now to the main contribution of this paper by introducing CRISP-
PCCP, the tailored process to systematically anticipate the consequences of a
change of a Machine Learning-Enabled Device Software Function (ML-DSF). It
aims to assist in formulating the PCCP described in FDA’s recent draft [27]. If
a manufacturer follows the process, he or she will receive an estimation on how
high the chance of acceptance by the FDA would be for a particular anticipated
device change (ADC). Moreover, the manufacturer may use the CRISP-PCCP
as a documentation input for the PCCP.

Note that CRISP-PCCP neither addresses non-ML device changes nor
provides general advice on developing ML-DSFs. CRISP-PCCP focuses purely
on changes to the ML component. CRISP-PCCP builds heavily on the CRoss-
Industry Standard Process model for the development of Machine Learning
applications with Quality assurance methodology (CRISP-ML(Q)) framework
proposed by Studer et al. [19].

CRISP-PCCP is implemented by performing the following steps (see also
Figure 1):

1. provide a sufficiently precise description of the anticipated device change
(ADC)

2. for each generic task:
1) argue whether implementing the ADC alters the generic task in its

current state
2a) if so, answer generic questions, interpreting them appropriately (see

Section 4.1)
2b) if not, provide a rationale on why a change is excluded

3. revisit generic tasks as needed (e. g. if side effects and dependencies are
discovered), until satisfied
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Fig. 1. Flowchart for Iterative Assessment and Implementation of Anticipated Device
Changes (ADC) in CRISP-PCCP.

4. performing a change impact assessment (see Section 4.5)

These steps must be repeated for each phase in the CRISP-PCCP. The phases
of CRISP-PCCP can be seen in Figure 2. It is assumed that if a manufacturer
follows this process and document the result as a PCCP request he or she will be
able to demonstrate a thorough understanding and control over the anticipated
changes to the device, ensuring that each modification is evaluated for its impact
on safety and effectiveness.

Let us use an example to guide us through the description of the various
generic tasks to come. The example is closely related to one of the prototypes we
used to develop our approach. However, depending on the generic task to explain,
we vary the purpose and the capabilities of the example, without restricting
ourselves to the actual prototype. For more information regarding the prototype,
see https://ki-sigs.de/projekt/AP%20310 (in German).

https://ki-sigs.de/projekt/AP%20310
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Fig. 2. Overview of the phases of CRISP-PCCP and their interaction.

Example 1. Imagine a portable Optical Coherence Tomography (OCT) scanning
device [12], which captures an image of the patient’s retina, performs a semantic
segmentation to localize macular degeneration (if present) and diagnoses whether
the macular degeneration is dry or wet. The computation is performed locally
on the device. The image capturing and preprocessing is realized by rule-based
(non-ML) software. The semantic segmentation is done by ML software based
on a U-Net 6 model . The classification, whether macular degeneration is present
and whether it is dry or wet, is performed by rule-based software. Further
downstream tasks, like presenting the classification result to a user, are realized
by rule-based software.

Starting at Section 4.1, we present the relevant generic tasks within our
approach. We adjusted some tasks to better fit the development of ML-DSF in
the medical context and assigned an impact level to each task, indicating the
acceptability of the anticipated device change within a PCCP.

In the overview given above, we mentioned to answer generic questions, if a
generic task is altered by an ADC. By that, we mean to answer thoroughly

(i) what is going to be changed,
(ii) why is the generic task going to be changed
(iii) where is the change going to take place (potentially affected region,

emphasis on physical location), and

6 A U-Net is a special Convolutional Neural Network that was primarily developed
for the segmentation of image data in medical image processing [17].
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(iv) who is going to be responsible for the change (required qualifications still
met)?

If there is no clear answer to one of those questions or the change does not
affect the ML part of the ML-DSF, a rationale for that generic task has to be
given to explain why the change may be excluded. Further we use a set of generic
tasks as the basis, derived from CRISP-ML(Q). A manufacturer is free to add
or remove generic tasks to the phases of CRISP-PCCP to fully meet the needs
of their ML-DSF-enhanced product. Since CRISP-PCCP is modular, adapting
the process to suit the manufacturer’s specific requirements is often beneficial.
We will now walk through the relevant generic tasks of CRISP-PCCP, phase by
phase.

4.1 Data and Business Understanding

Quoting Studer et al. [19], this “initial phase is concerned with tasks to define
the business objectives and translate it to ML objectives, to collect and verify
the data quality, and to finally assess the project feasibility.” We build on this
definition, but leave out the part regarding the project feasibility, as we assume
in our context that the feasibility analysis has already been performed at an
earlier stage of development, initiated by other requirements. Besides that, we
identified several key topics to be considered when assessing the impact of an
ADC, like the intended use, quality goals, and capturing processes, just to name
a few.

Intended Use The FDA refers to intended use as the general purpose of a
product, which is the objective intent of the legally responsible representative
(e. g. the manufacturer or a reseller) who labels the product [25]. This intent
may be claimed over the package or in the instruction for use, the design, or the
composite of the product. The FDA offers a tool that shall help to determine
whether a product’s software functions may fall potentially under the scope of
the FDA’s oversight [24].

Scope By scope, we mean the specific functionality of the ML-DSF that is
achieved through an ML model. It is important to distinguish between the
intended use and the scope, as the scope may change without affecting the
intended use. The following argument explains this distinction: The scope
of Example 1 covers performing semantic segmentation to localize macular
degeneration, given an RGB image. Stating whether macular degeneration is
present (e. g. if the segmentation exceeds some threshold), or even deciding
whether the degeneration is wet or dry, is not determined by ML software and
therefore not part of our scope. An ADC is to replace the non-ML classification
software part with an ML model, leaving everything else as is. The scope is
affected but not the intended use.

Therefore, in our Example 1, the generic questions must be answered, which
we do in Table 1. For brevity reasons, we omit the questions in the remaining
examples.
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Table 1. Answers to generic questions for an ADC affecting the scope of Example 1.

What? The rule-based component which classifies the segmentation
is replaced by an ML model.

Why? Experiments indicate a higher accuracy of the ML model in
comparison to the rule-based approach.

Where? All devices that have the ML-DSF or for which it is
subsequently made available by means of an update.

Who? ML engineer in the development unit, test engineer during
integration test

Intended Patient Population Citing the patient-focused drug development
glossary7, the intended patient population is defined as “the group of individuals
(patients) about whom one wishes to make an inference.”

To give an example how the intended patient population is affected by
an ADC, assume that in the case of Example 1, the initial intended patient
population is defined as persons of age 50 to 70 years. However, anticipating
that one year after market submission, enough training data will be available
of persons of age 40 to 80, the intended patient population is extended to that
range.

Quality Goals We highlight several quality goals, relevant to ML in the medical
field (derived from the success criteria mentioned in CRISP-ML(Q) [19]).
Namely, the diagnosing performance goal, runtime performance goal, robustness
goal and the human understandability goal. We emphasize the term goal in
these cases, as we are interested in the intended consequences of an ADC.
When applying our method to the example, we obtained several useful insights:
Most ADCs can impact certain qualities in some way, even if that was not the
original intention. To avoid meaningless answers to our questions, we adopt
a specific approach. Often, the side effect of an ADC on a specific quality
(not the goal) cannot be ruled out. Therefore, we focus only on intended
consequences, which we refer to as quality goals. This means we aim to maintain
the effects on diagnosis performance, runtime performance, robustness, and
human understandability within reasonable limits. It is worth noting that
existing quality assurance processes already cover these aspects.

Ideally, every goal is defined by a measurable metric or verifiable [27,1,16]
By diagnosing performance we mean properties like accuracy, specificity,

sensitivity, and so on Runtime performance includes computation time, memory
and storage consumption, and energy requirements. Robustness denotes “the
degree to which a component can function correctly in the presence of
invalid inputs or stressful environmental conditions,” see [7]. By human
understandability, we refer to “the ability to explain or to present in
understandable terms to a human”, see [3].

7 Refer to https://www.fda.gov/drugs/development-approval-process-drugs/patient-
focused-drug-development-glossary.

https://www.fda.gov/drugs/development-approval-process-drugs/patient-focused-drug-development-glossary
https://www.fda.gov/drugs/development-approval-process-drugs/patient-focused-drug-development-glossary
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Capturing Process and Digital Representation By capturing process we mean the
transition of turning a physical object or an action into a digital representation.
The digital representation is the result of the capturing process, usually the
output of the capturing device. For example, recording an image is a capturing
process and the image file is the digital representation.

Considering again the above mentioned portable OCT device. Assume that
the training set of the original device (OD) consists of images captured by a
stationary OCT scanner in a lab environment, creating images of high quality.
Expanding the training set by retina images collected during production use
of the portable OCT device, which by construction generates images of lesser
quality and operates in diverse environments, is an example of a change in the
capturing process and its digital representation.

4.2 Data Preparation

Data preparation covers all tasks involved in the transformation of data in its
digital representation (see above) to a form which is accessible by ML models.
This includes tasks operating directly on the digital representation, like selection,
cleaning, and imputation, but also conversion steps like construction, integration
and formatting.

In contrast to CRISP-ML(Q), we do not divide this phase into smaller
parts (generic tasks). One reason is that in practice, we experienced that data
preparation (preprocessing) closely intertwines the mentioned generic tasks. For
example, many deep learning frameworks provide functions which convert JPEG
images to a multidimensional array of floating point values in the range of [0, 1].
These functions combine construction and formatting into one step. Often, they
allow to integrate cropping, linearly transforming, and normalizing functionality,
which then also covers selection and cleaning. Another reason is that for our
approach, it is not necessary to distinguish between the generic tasks, as they
are treated equally regarding their Change Impact Assessment Level (refer to
Section 4.5 for further details).

4.3 Modeling

By modeling we mean the declaration (implicitly and explicitly) of a space of
learnable functions which is later systematically searched for a good (in terms
of some metric) solution. To find, at least in principle, a good solution within
said space, it is necessary that the space of learnable functions contains a good
solution in the first place (the space should not be too small). To find the solution
in a reasonable amount of time, it also should not be too large. Thus, it is
important to carefully select the space of learnable functions.

The following paragraphs describe the principles that affect its size and its
content.
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Domain Knowledge & Data Assumptions Domain knowledge and data
assumptions incorporated into the OD may not be valid with regards to an ADC.
For example, assume that the image capturing device of Example 1 can record
more image modalities than just those by cameras using visible light. The other
modalities were recorded during production use and integrated into the training
set, which did not contain such images during the development of the OD. The
segmentation component of Example 1 will no longer be a two-dimensional
U-Net, but multidimensional. Domain knowledge and data assumptions that
expected two-dimensionality may no longer be valid for higher dimensions.

Modeling Technique By modeling technique, we mean the selection of the class
of models to choose from. For example, modeling the scope via decision trees
is a modeling technique. Modeling it instead via fully connected deep neural
networks is another. Pre-training, transfer learning, and assembling also fits into
this generic task.

The modeling technique is affected by an ADC, if for example a novel feed
forward network module is introduced in the literature and the manufacturer
decides to incorporate it into the ResNet8 of the OD.

Tuning Procedure Identifying the space of potential learnable functions
constitutes an initial step within the model development framework, whereas the
precise selection of a singular function from this space encompasses a distinct
and complex challenge. By tuning we mean the guided selection of a learnable
function, typically facilitated by a designated dataset known as tuning data9.
This selection process commonly adopts the formulation of an optimization
problem aimed at evaluating and ranking the candidate functions within the
specified space. Usually, the candidates of a given space are ranked along a
specifically formulated optimization problem. By defining loss functions and
regularization terms, candidates are valued, preferring the ones with higher value
(or equivalently, lower loss). To systematically (and hopefully efficiently) search
only for promising candidates, optimizer are applied. Depending on the way the
optimizer operates (initial solution, local optimization, global optimization, . . . ),
some candidates are effectively excluded. Considering again the example we gave
for the scope, replacing a non-ML unit with an ML unit will affect the tuning
procedure of the OD, or introduce a second one.

Reproducibility The modeling is reproducible if, based only on the modeling
documentation, the previously learned function can be identically recreated.
Often this fails due to implicit data assumptions, non-written domain knowledge,
or (hidden) randomness.

8 A ResNet (Residual Network) is a type of Convolutional Neural Network specifically
designed to train deeper networks by addressing the vanishing gradient problem [6].

9 This is often called validation data, when splitting the available data into the
training, validation, and test set. We prefer, and so does the FDA, the term tuning,
as it avoids confusion with the meaning of validation in the medical context.
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Looking again at our running example, an ADC might add more stochasticity
to the ML model (e. g. by introducing variational parts). If the manufacturer
misses to keep track of the randomness passed through the training, a later
reproduction fails.

4.4 Evaluation

In the evaluation phase, we check whether the performance, robustness, and
human understandability goals, defined in phase 1, are met by the learned
function obtained from phase 3. In its draft of the PCCP [27], the FDA states
that the modification protocol describes “[. . . ] the methods that will be followed
when developing, validating, and implementing modifications [. . . ].” Thus, it is
mandatory to examine whether the evaluation procedures for the OD are still
suitable for evaluating an ADC.

For example, an ADC of the portable OCT device mentioned above is to
diversify the intended patient population, by adding corresponding training data
which will be acquired after the first market admission. Additional diagnosis
performance evaluation explicitly targeting the newly affected patient population
is necessary.

4.5 Change Impact Assessment and Summary

In the previous sections, we presented those generic tasks of the CRISP-PCCP
phases, which we deemed appropriate for our approach. Treating each of these
generic tasks and eventually answering the related questions gives a rather
detailed view of the impact an ADC may have. However, a broad picture
or a conclusion might be unclear. For this reason, we propose a systematic
method to condense the change impacts into a single number: the Change Impact
Assessment Level (CIAL).

The FDA identified in [23] three broad categories of changes of an ML-
DSF: performance changes, input changes and intended use changes. In our
view, changes related to the ML-DSF’s performance generally have the highest
chance of being compatible with a PCCP (meaning that the FDA will probably
accept anticipated changes of this kind in most cases). For example, the usage
of additional training data from the intended patient population, gathered from
field usage to increase the accuracy of the ML-DSF, is a change that is likely
to be compatible with a PCCP. To such a change we assign the Change Impact
Assessment Level (CIAL) 3.

For changes related to the ML-DSF’s input, e. g. the dimensions or resolution
of input images and inclusion of additional features, we assume the chance
of being PCCP compatible to be on par with the chance of being PCCP
incompatible. The broad range of ways to change the input with (more or
less) wide-ranging effects justify our view. Therefore, we assign to each input
change the CIAL 2. For each CIAL 2 change individually, we suggest consulting
experts and/or reaching out to the FDA as early as possible, to increase PCCP
compatibility chance of that change.
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Table 2. The CIAL compatibility classes per generic task (or phase). The higher the
class, the more likely we deem a corresponding change to be PCCP compatible (3 being
the highest, 1 being the lowest).

Generic Task (phase) CIAL

Data and Business Understanding
Intended Use 1
Scope 2
Intended Patient Population 2
Quality Goals 3
Capturing Process & Digital Representation 2

Data Preparation 2

Modeling
Domain Knowledge & Data Assumptions 2
Modeling Technique 1
Tuning Procedure 2

Evaluation 1

Changes to the ML-DSF’s intended use have, according to the FDA ([27,
p. 17]), a low (but non-zero nevertheless) chance of being PCCP compatible. We
denote the CIAL of such changes by 1.

Guided by the principles above, we assign to each generic task (or phase) of
the CRISP-PCCP process model the most fitting change category (performance
changing, input changing, intended use changing), yielding the corresponding
CIAL (see Table 2).

By definition, the intended use will receive a CIAL of 1.

To the evaluation phase, i. e. the evaluation of the four quality goals diagnosis
performance, runtime performance, robustness, and human understandability,
we also assign a CIAL of 1. The reason is that the approval of a medical device
strongly correlates with the degree to which the ML-DSF fulfills the quality
goals and the validity of the degree itself depends on the comprehensiveness and
thoroughness of the evaluation method [18,22].

Since increasing the scope of an ML-DSF probably lessens the PCCP
compatibility, but decreasing the scope of an ML-DSF probably raises the PCCP
compatibility, we assign the CIAL 2, to take the unclear situation into account.
Considering the case individually may allow for a change of the CIAL to 1 or to
3.

If changing the intended patient population resembles rather an extension
of the existing population (e. g. enlarging the age interval to both sides) and
supporting arguments to do so exist, we suspect a high probability of PCCP
compatibility. On the other hand, if the intended patient population is expanded
by a rather “orthogonal” group, that only has a minor overlap with the existing
population, many other generic tasks would presumable also be affected by this
expansion, which in turn make it difficult to argue for PCCP compatibility.
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Another generic task with CIAL 3 is quality goals. We assume that changing
the quality goals will only result in more sophisticated goals (never less
sophisticated ones), for economic reasons, and accordingly expect a high PCCP
compatibility. The tuning procedure is a generic task that would fall under CIAL
2 with the potential to tend to a CIAL 1. On the one hand, most of the time
the tuning procedure only intends to increase the performance or to find even
better solutions to the optimization problem. On the other hand, the solution is
based on actions performed by the manufacturer and falls more in the category
of a software change.

The generic tasks capturing process & digital representation, data preparation,
domain knowledge & data assumption and tuning procedure each encompass a
diverse range of possible changes, for which we do not see ourselves in a position
to proclaim either a high or a low probability of approval. That is why we assign
the CIAL to all of them, resorting to the consideration of individual cases.

The last step of the change impact assessment is to check for the lowest CIAL
from the generic tasks. To do so, first select only those generic tasks, which are
affected by the ADC, i. e. which have answers to the generic questions and no
rationales supporting their exclusion. Second, order them ascending by their
associated CIAL. If there is a CIAL of 1 the chance is low that the FDA would
accept the ADC for approval. If there is a CIAL of 2 the chance of FDA approval
increases but it is recommended to get in touch with the FDA to discuss further
conditions. And finally, if there is a CIAL of 3 the chance that the ADC will be
approved by the FDA is high.

One should carefully consider whether it is worth the effort to continue the
approval procedure of an ADC with overall CIAL 1. An ADC of overall CIAL
2 is more promising in that regard, but we strongly suggest involving experts
and/or the FDA early in the further development process. An ADC of overall
CIAL 3 is likely PCCP compatible.

5 Discussion

The CRISP-PCCP process was initially developed in response to the FDA’s
Proposed “Regulatory Framework for Modifications to ML Software as a Medical
Device” [23], as part of the BMWK-funded KI-SIGS project [10]. It was evaluated
and refined in three different projects, including “PASBADIA” [21] and two
others from the KI-SIGS initiative, all focusing on ML-supported medical
devices.

Comprising ML and regulatory experts from the KI-SIGS project, the
working groups applied CRISP-PCCP to address specific ML challenges in
their respective projects. They aimed to identify and assess potential changes
within the ML processing pipeline. The methodology included introducing the
CRISP-PCCP’s background and goals, followed by its application. Using the
current development state of the corresponding project as a baseline, upcoming
development goals were identified and examined using CRISP-PCCP. This
process helped in easily identifying changes outside the ML development scope,
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encouraging the teams to define a rationale at the end of each investigation,
which could be incorporated into technical documentation as proof of proper
PCCP application.

The CRISP-PCCP process proved to be a relevant procedure for the
documentation of ML development results. The underlying CRISP-ML(Q)
process enabled detailed examination across various ML development phases.
The CRISP-PCCP template aided in posing important questions and assessing
potential changes. The ML developers from different research and development
projects, which were involved in the development process of the CRISP-PCCP,
independently confirmed the process’s utility in evaluating changes in ML.
Regulatory experts viewed CRISP-PCCP as a useful method for capturing
and assessing changes and their impact on the ML model. CRISP-PCCP has
potential beyond continual learning ML applications, such as being part of the
development planning for ML models while identifying associated risks. Changes
to the ML model can be assessed, and implementation planning can be based
on the CIAL, prioritizing changes with a higher chance of acceptance.

CRISP-PCCP can also play a role in the European jurisdiction. The support
for change management processes and ML development planning is also required
by the Medical Device Regulation (MDR) [20], which CRISP-PCCP can assist
with. Additionally, there is a questionnaire titled “Artificial Intelligence (AI) in
medical devices” published by the Interest Group of Notified Bodies [8], intended
for auditors to ask questions during audits about the ML product development
life cycle. Manufacturers can also use this document to identify gaps in their
documentation. CRISP-PCCP, due to its structure, can then be expanded to
cover identified gaps and serve as appropriate development documentation.

6 Conclusion

CRISP-PCCP is a process adapted from CRISP-ML(Q) [19], selectively
incorporating its first four phases reflecting the developmental stage of projects.
It assumed that the Deployment and Quality Assurance phases from CRISP-
ML(Q) are integrated in the existing development process. Despite that, CRISP-
PCCP demonstrated its potential in meeting FDA’s PCCP [27] requirements
in selected projects. However, its application to projects involving Continual
Learning ML models and validation by the FDA itself remains pending, mainly
due to the limited number of such projects in medicine.

The integration of CRISP-PCCP in the European jurisdiction, considering
the evolving AI-Act [4], poses future research questions. The AI-Act, recently
passed in the European Union, seeks to regulate artificial intelligence. It aims
to establish a legal framework ensuring AI systems’ safety, compliance with
privacy and data protection laws, and the upholding of fundamental rights. The
co-existence of the AI Act and the Medical Device Regulation imposes many
questions on how to address similar overlapping concerns and requires future
research.
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