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Abstract. We review our experience with integrating Artificial Intelli-
gence (AI) into healthcare systems following the Model-Driven Develop-
ment (MDD) approach. At a time when AI has the potential to instigate a
paradigm shift in the health sector, better integrating healthcare experts
in the development of these technologies is of paramount importance. We
see MDD as a useful way to better embed non-technical stakeholders in
the development process. The main goal of this review is to reflect on
our experiences to date with MDD and AI in the context of develop-
ing healthcare systems. Four case studies that fall within that scope but
have different profiles are introduced and summarised: the MyMM ap-
plication for Multiple Myeloma diagnosis; CNN-HAR, that studies the
ability to do AI on the edge for IoT-supported human activity recog-
nition; the HIPPP web based portal for patient information in public
health; and Cinco de Bio, a new model driven platform used for the
first time to support a better cell-level understanding of diseases. Based
on the aforementioned case studies we discuss the characteristics, the
challenges faced and the postive outcomes achieved.
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1 Introduction

The integration of AI into healthcare systems is potentially a paradigm shift
for the healthcare sector, with impacts on a variety of levels, such as computer
aided diagnostics, personalised medecine, drug discovery, disease understanding,
and the processing of healthcare records to name a few. AI’s ability to extract
actionable knowledge from large amounts of unstructured data has huge oppor-
tunites to advance medical discovery and also free medical professionals from a
variety of administrative tasks through automation.

There are also potential pitfalls. In computer aided diagnostics, implicit or
explicit biases in the training data could lead to higher rates of misdiagnosis
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in underrepresented patient groups. There is a trade-off between preserving pa-
tient privacy and maximising treatment outcomes with respect to personalised
medicine. It is therefore critical to embed medical professions and other stake-
holders in the development process as much as possible.

MDD can be a way to include professionals more and earlier in the devel-
opment of new healthcare software and systems. MDD works using models of a
given domain, be they models of organs (like a digital twin), of procedures (like
workflows) or of knowledge (like databases, ontologies, and rules). Some of these
models are represented as data, others as graphs (like workflows and processes)
which can be later transformed into executable code, human or AI generated.
These models capture the essence of the domain and the problem the system
solves. Most of them enable the creation of Domain-Specific Languages (DSLs)
which express the functionalities in the domain in a more intuitive way for the
health professionals, and this way improve the usability and effectiveness of the
models and the systems. The key property is that models and DSLs must offer
a level of abstraction directly accessible to the domain experts, shielding the
technicalities. The goal is that domain users may be able to understand the sys-
tem’s design and functioning without the need to also understand the underlying
technologies for the implementation and runtime.

This paper explores our experiences to date with respect to the two dimen-
sions of advanced model driven development and AI in the development of health-
care systems. We summarise four case studies with different characteristics in
this spectrum, covering different applications in healthcare: diagnosis in clinical
medicine (MyMM), primary care for neurologocal impairment (CNNHAR), pa-
tient information in public health (HIPPP) and the cell-level understanding of
diseases (Cinco de Bio (CdB)).

The paper is organized as follows. Section 2 considers literature and previous
work pertaining MDD and AI in Healthcare Systems. Section 3 presents and
discusses the four cases studies. Section 4 discusses the characteristics, challenges
and successes in the cases studies. Finally Section 5 offers some final thoughts
on the current work and perspectives for future work.

2 Model Driven Development and AI in Healthcare
Systems

We consider here the two main perspectves of AI and MDD in healthcare.

2.1 AI in Healthcare

AI and Machine Learning (ML) are increasingly embedded in healthcare systems
all the way from the laboratory, in biomedical research, to clinical medicine and
patient care at home.

In health related research, AI models have proven to be extremely effective
for the prediction of protein structures [27] in drug discovery, and to predict
physiochemical properties [67] of environmental chemicals. When understanding
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diseases, AI models enable single cell segmentation in tissues, and thus single
cell analysis [23, 37].

In the context of primary care, Internet of Things (IoT) devices and AI at
the edge have been used effectively to mitigate the negative side effects (without
direct human intervention) for individuals with a variety of illnesses. An excellent
example is the use of smart devices to predict and detect gait freezing episode of
Parkinsons patients, so that an automated intervention can un-freeze the patient
[10, 11].

In public health, AI and ML have been succesfully used for information anal-
ysis and data mining. During the COVID pandemic, Irish researchers developed
a method of estimating the reproduction or ‘R-number’ in COVID-19 cases, the
number that describes the likelihood of a virus increasing or decreasing in a pop-
ulation. Their susceptible-exposed-infected-removed – or SEIR – model, based
on statistics and ML, was used regularly to provide up-to-date scenario anal-
ysis to the National Public Health Emergency Team (NPHET) [21]. Similarly,
AI helped identify diseases and foodborne illness outbreaks through data min-
ing social media data [54, 58, 59]. AI has also been used to identify individuals
suffering with mental ilnesses through the analysis of social media data [30, 48,
62]. AI models have been developed to mitgate the effect of low-quality health
information on treatment outcomes of patients, by automatically evaluating the
quality of web-based health information with respect to some established evalu-
ation frameworks developed by physicians [31].

In clinical medecine, AI models support clinicians in a variety of ways. Med-
ical image classification models assist in the diagnosis of a variety of diseases
[68, 65, 25, 34]. Examples are mammogram classification in the context of breast
cancer diagnosis [4], heart disease [46], and many more. The possibility of us-
ing Large language Models for computer aided diagnosis is being explored [61],
along with the development of clinical decision support systems that use other
AI methods [66]. LLMs are also expected to help reduce the ever growing ad-
ministrative workload.

2.2 Model Driven Development in Healthcare

MDD has been used extensively in the healthcare domain in recent times with
impacts across a broad range of applications such as clincal medecine, informa-
tion systems for healthcare and health monitoring systems.

In the context of clinical medicine, MDD has been used to simplify the process
of developing software systems for clinical scoring and mobile health through the
use of meta-modelling [18]. A meta-model that facilitates the development of
dynamic checklist support systems for clinical safety helps reduce the cognitive
load for clinical stakeholders when designing such systems [49].

With respect to information systems for healthcare, a MDD based versatile
Nursing Information System (NIS) can cater for a variety of clincal require-
ments across a range of clinical settings and be deployed on different devices
[63]. For general Hospital Information Systems (HIS), a multidimensional super-
vision metamodel was developed to create a general framework that mitigates
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the challanges of developing such systems which have to cater for a wide vari-
ety of end-users and healthcare delivery processes [35]. Agile and model driven
methodologies have been shown to aid in the development of Electronic Health
Record (EHS)-based population registries and their associated data collection
tools [28]. Model-Driven Engineering (MDE) principles have also enabled soft-
ware engineers to develop HL7 (a healthcare information and protocol standard)
models using a Unified Modeling Language (UML) based interface [50].

In the context of personal health monitoring, a model-driven computational
framework for Personalized Health Monitoring (PHM) applications using IoT de-
vices poses specific emphasis on security and energy issues [60]. A framework for
general IoT-based healthcare monitoring systems presents a meta-model which
defines the fundamental components of such systems and their relationships [3].

In the specific context of MDD, we use a set of Integrated Modelling Frame-
works that are described next.

2.3 Model Driven Development Frameworks

Our approach simplifies the IT and integration tasks by composing models of
behaviour to achieve the same results. By introducing the different DSLs as
the high-level abstraction for each behaviour and plugging them in, we enable
a development cycle where stakeholders, instead of only defining requirements,
can take action by participating actively in the successive stages of the project.
This approach has been successful in several domains, for example in smart
agriculture applications [24].

Our contributions cover the demonstration of various aspects of the use of
two Low-Code / No-Code (LCNC) development environments, DIME [12] and
Pyrus [69], and the extension of their Application Domain Specific Languages (A-
DSLs) to cover healthcare settings. To accomplish this, we extend the range of
A-DSLs that these two environments provide in order to enable our external data
sources and systems to become amenable to our LCNC application development
approach, allowing a high level of reusability. This extension involves creating
several building blocks to communicate with the different systems, that may as
well include IoT devices like the low-cost compact multi-sensor platform Nordic
Thingy:53 5 that we use for example in the Human Activity Recognition (HAR)
context. The A-DSLs in particular enable analytics pipelines for a subsequent
decision-making.

We embrace a LCNC software development paradigm [9], that is rapidly gain-
ing foot in industry and is predicted to become the development style of choice
for 80% of newly developed software by 2026 [1]. However, we specifically adopt
a Model Driven Design and development paradigm [45, 38] where the models
are not just graphically suggestive but also have an underlying formal model
in terms of Kripke Transition Systems [33]. This choice makes them analyzable
through well-established techniques like control flow and data flow analysis [36]
, model checking [8], property checking [56], reachability analysis [29] and more,

5 https://docs.nordicsemi.com/bundle/ugthingy53/page/UG/thingy53/intro/frontpage.html
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like synthesis [41], [40], also in robotics and IoT contexts [26]. Specifically, we
use here the two Integrated Modelling Environments DIME and Pyrus.

DIME is an Eclipse-based LC/NC graphical modelling environment that
enables prototyping web applications in a model-driven way. It follows the One
Thing Approach (OTA) [43] and the eXtreme Model-Driven Design (XMDD) [44]
paradigms for modelling and development, empowering domain experts to model
an end-to-end web application with no programming experience. To cover the
different aspects of web applications, DIME provides a collection of ready-to-
use modelling languages, as well as collections of native DSLs that support the
development of new applications via composing models of different natures. In
particular, DIME allows users to define the data model, create the user inter-
face models, and create the workflows. Those models are checked for syntactic
compliance largely automatically 6.

Pyrus is a web application that offers a graphical, collaborative development
environment for Data Analytics. It bridges the gap between Python-based estab-
lished programming platforms like Jupyter [32] and graphical workflow compo-
sition in a data-flow fashion. Individual Python functions are implemented and
stored in Jupyter, special signature annotations are added to these functions
and exported to Pyrus, so that the functions can be identified and retrieved
by the Pyrus web-based orchestration tool, where the pipelines are composed.
From the pipelines, Pyrus generates the Python code for the orchestration and
configuration, which is again stored and executed in Jupyter. This separation
of concerns decouples the coding and development of the single functionalities
(in Python/Jupyter), the low-code part of the approach, from the data ana-
lytics orchestration modelling, which happens in accordance with model-driven
engineering principles and completely graphically, in a no-code fashion.

3 Case Studies

Here we summarise four selected case studies that exemplify our experience of
bringing model driven development and/or AI into the healthcare domain.

3.1 Automating the Diagnosis of Multiple Myeloma - XMDD and
Web

Multiple Myeloma (MM) is a blood cancer that develops in plasma cells in the
bone marrow. It is one of the deadliest forms of blood cancer, with a five-year
survival rate as low as 40%. In collaboration with the University Hospital Lim-
erick, in the context of the interdisciplinary UL Cancer Network (ULCaN), we
automated the referral pathway for MyMM through a Web application developed
in DIME, using XMDD.

MM is a cancer with circulating monoclonal paraproteins. It is diagnosed
by measuring risk factors in the blood: monoclonal proteins called Paraproteins

6 DIME can be downloaded from https://scce.gitlab.io/dime/



6 C. Brandon, A. Singh and T. Margaria

Fig. 1. Extract from UHL Guidance on Management of MGUS in Primary Care [51]:
risk stratification workflow.

(PP), and Serum-Free Light chain (SFLC) ratios, in blood samples. When lower
levels of paraproteins are detected in healthy individuals, this is known as Mon-
oclonal Gammopathy of Uncertain Significance (MGUS). A risk stratification
protocol along the levels of such factors developed at the University Hospital
Limerick [52] (see Fig. 1) recommends a patient’s further care depending on
their outcome. These outcomes can range from a yearly check-up and moni-
toring via a General Practitioner (GP) to an urgent referral for a patient to
be seen by a consultant within the Haematology department. We aimed to im-
prove referral timelines for patients with possible MGUS and automate the risk
stratification process by replacing the manual process with a web-based applica-
tion developed in DIME with XMDD technologies. The MyMM web application
implements the manual reference risk stratification algorithm and for patients
with possible MGUS it communicates a patient’s further care to the requesting
physician or GP. The system includes a process model implemented in the DIME
development environment.

Fig. 2 shows the corresponding top level decision process modelled in DIME,
with a layout resembling the layout of the original algorithm.

It contains several process models that carry out the task of completing each
comparison for each layer of the risk stratification seen in figure 1. Care was taken
to mimic in the DIME process structure and layout of the original algprithm,
which is known to the healthcare specialists from their training.

Solving this particular problem is important because the automation makes
the evaluation and communication of outcomes immediate, instead of waiting
for days until a trained specialist finds time to manually score the accumulated
batch of samples. In case of the worst outcomes, timeliness is crucial.
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Fig. 2. The top process model of the risk stratification process (in DIME).

A key challenge was the aim to develop generic processes and components,
easily parametrizable, that can be easily reused for other risk stratifications or
scoring algorithms. The adopted solution is to abstract parameterizable compo-
nents and develop generic processes.

The full-stack web-application generated and deployed from the DIME mod-
els and Service-Independent Building Blocks (SIBs) also facilitates users to inter-
act with the computational risk stratification algorithm through a web-interface.
This reduces the need for skilled healthcare staff to manually apply the algorithm
to patient data sets. The DIME development environment lends itself to map-
ping workflows and process control flows, making development in this manner a
utility.

3.2 CNN-based Human Activity Recognition on Edge Computing
Devices

Research on HAR involves wearable devices integrating inertial and/or physio-
logical sensors to classify human actions and status across various application
domains, such as healthcare, sports, industry, and entertainment [19]. However,
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Fig. 3. Full monitoring of a HAR subject with wrist sensors and other monitors
(from [19]

executing HAR algorithms on remote devices or the cloud can lead to issues such
as latency, bandwidth requirements, and energy consumption. Transitioning to-
wards Edge HAR can be a more effective and versatile solution, overcoming
the challenges of traditional HAR techniques. A novel HAR model for com-
putation on edge devices was presented in [55], with a Convolutional Neural
Network (CNN) Deep Learning approach, then compared with cloud-computing
HAR models.

Figure 4 describes the adopted HAR processing pipeline, with all the pro-
cessing steps: Data collection, Noise removal, Segmentation, Feature extraction,
Feature selection, Train/Test split, Training HAR model, Deployment on Edge
device, Performance exploitation. The CNN model was trained on the Edge Im-
pulse cloud platform by implementing the pre-processing steps of Figure 4 and
deployed on the Thingy 53 device for real-time recognition and evaluation.

Data 
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Data preprocessing
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HAR 
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Performances
Precision, Recall

F1-Score, Accuracy
RAM, Flash, 

Inference time

Deploy 
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device

Thingy 53
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Time 
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Fig. 4. Detailed HAR system overview. (from [55]

The edge computing model achieved promising results (>= 92%) in terms
of Precision, Recall, and F1-score, and with significantly reduced latency and
minimal memory. Models with higher computational complexity can be deployed
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in the cloud but due to network latency and longer inference times they are not
suitable for real-time tasks

As we see, there is here a good outcome for gesture recognition, leveraging
CNN-based deep learning, but there is de facto no MDD in the implementation,
although the phased pipeline (with sub-workflows) of Fig. 4 would lend itself to
the technique.

3.3 HIPPP: Health Information Portal for Patients and Public

This case study [14] concerns the design and implementation of a public-facing
web application that facilitates the automated evaluation and ”scoring” of web-
based health information. Here, MDD is used to create the web application
(similar to the MM case), and to create a specific DSL which enables domain
users to use AI pipelines to conduct the end-to-end analysis of web based health
information with respect to established quality evaluation frameworks [53] de-
veloped by physicians. The AI DSL encompasses a variety of AI models across
Natural Language Processing (NLP) and graph processing to perform feature
extraction and classification, and ultimately to enable the evaluation process to
be automated. The HIPPP system was developed as a web application in DIME.
HIPPP utilises a variety of AI algorithms (transformers, graph neural networks,
random forests) and other computational techniques (dynamic programming) to
implement an end-to-end classification pipeline that automates the application
of the QUEST framework (see Figure 5). Due to our collaboration with col-
leagues in the Health Research Institute who work on colon cancer, it is tailored
so far to Web-based Health Information (WBHI) pertaining to the diagnosis,
treatment and prevention of colon cancer. The reliability and trustworthiness of
the sources are subjected to automated evaluation based on the QUEST frame-
work. In the context of the quest for more and more direct patient inclusion and
increased quality of information, the goal is for the system to act as a safeguard
against patients and the public unknowingly basing their medical decisions on
information that they should not trust.

It is foreseen to have an expert in the loop for cases that are not absolutely
clear, and to allow adaptive learning based on the manual scores that the ex-
pert(s) provide.

The first outcome of this work is the HIPPP application seen as a ready-
made fullstack web application which could be deployed by any public health
body or advocacy group and be used by patients and the public to evaluate the
information they access, providing it is trained on the specific health conditions
of interest. The second outcome is the extension of the capabilities of DIME
with an A-DSL for AI-based parsing and scoring of document based information
sources. It includes several SIB palettes and several processes (for the pipelines
and other algorithms) that are retargetable towards different scoring systems
and reusable for other conditions of interest.
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Fig. 5. A condensed view which shows translation of the QUEST authorship criteria
classifer (image from [53]) translated to a DIME process model (image from [14]).
Illustrating how the authorship scoring can be automated, using a combination of web
content extraction, named entity recognition and simple rule-based classifers.

3.4 Cinco de Bio: A Platform for Domain-Specific Workflows that
Leverage AI for Biomedical Research

Cinco de Bio [13] is a platform which enables users to design and execute biomed-
ical analysis workflows using a no-code graphical modelling language. The spe-
cific case study concerns cell segmentation carried out on large images of tissue
samples, with many layers of information. Fig. 7 summarises the process.

The analysis and segmentation software was already available in an imple-
mentation in Python, R and Matlab. We optimised some of the algorithms and
refactored it to be amenable to becoming SIBs, and redesigned the workflows,
while at the same time developing the Cinco de Bio modelling, compilation,
deployment and execution environment.
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Fig. 6. A high-level overview of the HIPPP classification pipeline (image from [14]).
With the developed DIME A-DSL consisting of SIBs which fall under one of the work-
flow steps namely web content extract, pre-processing, feature extraction, feature trans-
formation, classification and incremental learning for graph and natural language data.

The AI aspect of the project concerns the support in the recognition of single
cells, by improving the training capability through artificial image genertation.
This is currently ongoing work.

The platform comprises a) an Integrated Modeling Environment (IME) for
designing and validating workflows built using the Cinco meta modelling tool and
b) a workflow execution environment which translates the workflow models to
programs that orchestrate the analysis workflows. The execution environment
is a Kubernetes-native [15] application that comprises of several custom core
services that are loosely coupled. These services handle the execution front-end,
model-to-code transformation, computational environment for workflow orches-
tration program(s), data management, SIB management (which are stored in
container-registries (such as Dockherhub)) and a variety of APIs for handling
job-scheduling, SIB interactions, etc.. The core services are also accompanied by
a number of open source services to deliver the overall platform functionality,
namely RabbitMQ [64] (message passing), MinIO [2] (Cloud Native Storage),
MongoDB [47] (NoSQL database) and Kaniko (building container images in
k8s). In addition to the CdB core platform we have developed a SDK for inte-
grating Python and R-based tools into CdB as SIBs, to ease the tool integration
process.

Concerning the A-DSL and the modelling style, the SIB and workflow mod-
elling style in CdB is kept quite similar to the SIBs and processes shown in Fig. 2
for the Myeloma diagnosis case study and Fig. 5 for the HIPPP case study. This
is intentional, because the style has proven itself in a wealth of different appli-
cations from different domains (smart manufacturing, IoT, AI and reasoning,
decision support systems, games, and more), and also because it simplifies sup-
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Fig. 7. An overview of the image capture and image processing stage for highly-plexed
immunofluorescence imaginga.
aParts of the figure were drawn by using pictures from Servier Medical Art. Servier
Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported
License (https://creativecommons.org/licenses/by/3.0/).

porting the migration of current designs to CdB or to the Cinco-cloud platform
that is currently being implemented.

Cinco de Bio uses semantic typing and data/process ontologies to tailor the
concepts in its modelling language to the concepts and relations of the specific
domain. This enables for example semantic compatibility checking of the data
flow, which are in reality all TIFF files. Fig. 8 shows part of the data model
taxonomy for the highly-plexed tissue image analysis A-DSL.

It also enables the reusability of domain-agnostic components, ensuring at
the design stage that domain specific tools such as ML models (trained for a spe-
cific task) are being used correctly. The modelling language and the execution
platform are designed to support both automated and interactive components:
this is necessary because users must verify during analysis the outcome of work-
flow steps which are non-deterministic (such as for AI models) before proceeding
to the following steps of the workflow.

In the context of our motivating use case, pre-processing highly-plexed tissue
images for down-stream spatial and proteomic analysis there are a number of
different segmentation algorithms developed to solve specific challenges. The
first of which is known as de-arraying in the terminology of the field, which
essentially entails cropping out each individual tissue core from a tissue micro
array slide that may have over 100 cores. De-Arraying is done on a spatially
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Fig. 8. An excerpt of the data model taxonomy for the highly-plexed tissue image
analysis A-DSL. It classifies the application domain-specific data types in terms of
their syntactic data types (as in computer science data structures and formats) as
well as the semantic data types, expressing their meaning in the application domain.
We distinguish also atomic and non-atomic data types. An atomic type is a single
irreducible piece of data (in the context of the given application domain). For example,
a Core Protein Channel equates to a single page tiff (greyscale image) file. A non-atomic
type is a data structure which acts as a collection containing atomic or non-atomic
types.

downsampled version of the image and the crop coordinates are then translated
back to the full size images. The second form of segmentation is cell-segmentation
which is done on the full resolution image (for each cropped core), to acquire
the pixel coordinates for the nucleus and membrane of each cell. In both cases
convolutional neural networks are typically used for the mask prediction task,
however there are an array of post-processing steps required to acquire the final
masks (especially in the context of cell segmentation).

As Cinco de Bio is the first case of the new platform architecture, we de-
veloped the modelling and execution platform, as well as the process/data on-
tologies and the concrete SIBS and workflow models. All the data-processing
tools are implemented as containerised micro-services. This means that users
can chain together heterogeneous data-processing services, that require different
computational environments, into a single reproducible workflow.

The main contribution of this case study is the creation of a platform which
prevents biologists from having to learn to code (here, Python and R) in order to
undertake analyses on the data generated from their experiments. Secondly the



14 C. Brandon, A. Singh and T. Margaria

platform is designed for retargeting and extension to any domain, through the
creation of new SIBs, workflows, and data and process ontologies which describe
that domain.

4 Discussion

The four cases chosen for this contribution illustrate four different situations
that are typical when advanced sodtwaee enginering meets Ai:

1. MyMM embraces MDD for the comfort of having an easily modifiable web
application, but it does not do the step towards ML or AI. It would be
possible to move to an ML implementation of the risk stratification, for
example with decision trees or Algebraic Decision Diagrams (ADDs) in the
Addlib [22], or with random forests, and achieve a possibly more performant
computation. Here, however, the focus is on recognizabilty of the algorithm
at the process and processing level, which limits what can be done and
excludes approaches that would hide the structure of the computation, even
if semantically equivalent.

2. CNN-HAR embraces ML and the data science lifecycle, but not the MDD:
it contains classification and recognition, but is implemented essentially di-
rectly in Python. The workflow depicted would lend itself to the transfor-
mation to a Pyrus pipeline (if concerning just the data analysis) or a DIME
application (if including more interaction with the IoT device and a web
application). The limiting factor so far has been the choice of the Thingy:53,
which is thought as a product for end users and not for integration: its own
SDK cannot be accessed in a headless fashion, making the encapsulation
into SIBs impossible or very onerous. Other devices like the Thingy:52 are
designed for designers and developers: it is a compact multi-sensor proto-
typing platform designed to help in building prototypes and demos, and it
comes with a bluetooth Application Programming Interface (API) that is
amenable to the transformation of commands into collections of SIBs.

3. HIPPP combines both the DIME-built web application with a heavy role
of AI, ML and more, all encapsulated in reusable SIBs and processes. In this
sense, HIPPP is a great example of what both disciplines can deliver when
they join forces. HIPPP is a nice application, but being built on/with DIME
it still requires local installation of the IME environment (Java, Eclipse etc),
which is impractical for non-programmers who would otherwise not use these
tools. It also does not support collaborative modelling, as the models reside
in DIME and are not shared.

4. Cinco de Bio is the first prototype of the new generation of tools based on
Cinco and soon on Cinco-cloud [7]. CdB address several limitations of the
DIME application, namely CdB is a cloud native application whereas DIME
is not. DIME has limitations with respect to the size/quantity of data it
can process, therefore it cannot process data at the scale needed in the use-
cases CdB is designed for. Finally incorporating non-Java based compute
environments in DIME applications is a non-trivial task: the integration
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could be handled with relative ease but the environments would have to be
deployed separately and the address hardcoded into DIME.
On the other hand, CdB does not yet support hierarchical process modelling,
the IME component is currently Cinco-based and has not been integrated to
Cinco-Cloud and the CdB execution environment does not yet support GPU
acceleration. These features are going to be addressed in future versions of
CdB.
These observations are helping us develop the new R@ISE platform, which
will run on Cinco-cloud and is heavily informed by the CdB experience.
In terms of collaboration, this has been a successful case study where we have
started with a functioning implementation, partly in Python and partly in
R, of the core software, provided by the cell biologists, who have learned
Python and R, with the entire processing requiring a number of manual
steps to transfer files, start pipelines, interact with the system, which was
error prone and time consuming. Our task was to identify the core func-
tionalities of the software, wrap them into individual SIBs, and reconnect
them through workflows in an environment that then takes care of compila-
tion and deployment (on hereogeneous runtime stacks, for Python and R),
providing a unified web experience that automates all these steps and pro-
vides an easier experience as well as ease of reconfiguration and modification
of the processes. This seems to be a task along the prior experiences with
Bio-jETi [39], Fiat Flux [20], and ci:grasp [5, 6]
We had to intervene more than expected on the original code: disentangling it
into separate, reusable SIBs brought to a complete refactoring of the code,
and in that course we also optimised certain computations improving the
readability of the code and the runtime performance.
We actually achieved more than this: the taxonomies are a new addition, the
development of the interactive environment that supports human interven-
tion for choices is new, and two new algorithms that address challenges in the
application domain has also been devised. The first of which enables the cor-
rection of technical variances in samples. The other is a domain-specific data
augmentation technique which enables the training of segmentation models
on an extremely limited number of training samples. Both algorithms are
now the subject of separate publications.

5 Conclusion

We have discussed four case studies from our recent research activity with real
healthcare stakeholders, that illustrate different quadrants in the bidimensional
space of advanced model driven development, in a low-code/no code fashion,
and AI/ML.

In general, we have endeavoured to engage with the biology, health and
medicine partners on the basis of their needs at that time, and their capabilities
and interests. Form previous experience, it would not have been helpful to try to
impose a LC/NC approach on the HAR project at that time, because its focus
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was on the efficient and effective edge computation capability, and not on gener-
alizabilty. From that interaction, however, a collaboration grew, so that we are
now developing further variants of the evaluation pipeline where our technology
have found application.

On the contrary, the initial conversations with cell biologists several years ago
concerned how to provide their new (AI and ML based) algorithms, that were
implemented in Python, to third parties without handing out the Python code,
which is an intellectual property embodyment they wished to protect. This led to
conversations about interpreted vs. compiled languages: the distinction was new
to them. They embraced the usefulness of abstraction (have a second artifact
that is different from source code, for example compiled code, with different
properties, for example executability and obfuscation) but they did not have the
ability nor the funding for a reimplementation in some compiled language. Years
later we reconnected on the tissue analysis case study, where the ability to share
the models and even give access to execution to third paries, at the same time
hiding the source code was found very attractive and led to the design of Cinco
de Bio.

While the healthcare partners were happy with what the got, and sometimes
even surprised by what was achieved with the new technologies, it is clear to us
that the future lies in the next step beyond Cinco de Bio. In the new R@ISE
project, a large Strategic Partnership Project running for 5 years and co-funded
by industrial and civil society partners and Science Foundation Ireland, we are
currently starting to develop a new platform that will be online and cloud based,
support the interaction and co-design directly on the models, support the seman-
tic modelling through taxonomies as well as a strong capability to reason and
evaluate the correctness of models at design time. We see here a role for fully
automatic, ”lightweight” formal methods [57] (static analysis, model checking,
some synthesis) [42], but also for the use of AI, ML and Large Language Mod-
els (LLMs) in the platform itself, along the lines already recently initiated by
partners in Dortmund [16] and [17]. Healthcare will be still a core application
domain, in collaboration with the Bernal Institute, the Health Research insti-
tute, the Limerick Digital Cancer Research Cenre (LDCRC) and the University
Hospital Limerick.
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