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Abstract. Discussions on the risks involved in the deployment of AI systems are 
increasingly prominent in both public discourse and scientific debates. While talk 
of risk plays a crucial role in framing ethical and societal problems related to AI, 
we argue that it could profitably be associated with a clear analysis of uncertainty. 
Starting from a multi-component approach to AI-related risk assessment and 
mitigation, this chapter discusses the way the deployment of AI systems often 
takes place in contexts in which uncertainty is not meaningfully quantifiable. 
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1 Introduction 

Recent advances in the field of Artificial Intelligence (AI) have resulted in a widespread 
diffusion of AI systems to be applied for significantly heterogeneous purposes in a wide 
range of situations. In many cases, these systems are delegated with complex tasks that 
would typically require human intervention. What is more, they are increasingly 
employed in delicate contexts in which their decisions, predictions and classifications 
can have a significant impact on people’s life. Most notably, we can think about the 
fields of medical AI and predictive justice, or systems employed for loan processing 
and autonomous driving.  

With things being this way, the growing prominence of the notion of risk in 
discussions on the ethical and social implications of AI does not come as a surprise. On 
the one hand, a fair deal of literature and public discourse has been focusing on the so-
called existential risks related to the deployment of AI systems, often involving human 
extinction or global catastrophes. On the other hand, usually in open contrast with the 
talk on existential risk, increasing attention has been devoted to more mundane forms 
of AI-related risk.1 This latter approach – which is also the one behind this contribution 
– has led, among other things, to the recently approved European proposal for the first 
comprehensive regulation on AI – the so-called AI Act2 – where systems are classified 

 
1 https://www.nature.com/articles/d41586-023-02094-7, last accessed 2024/04/04. 
2 More precisely, the Regulation of the European Parliament and of the Council on laying down 

harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain 
Union legislative acts. (https://www.europarl.europa.eu/doceo/document/TA-9-2024-
0138_EN.html, last accessed 2024/04/04). 

https://www.nature.com/articles/d41586-023-02094-7
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html
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in accordance to their level of risk (unacceptable, high, limited, minimal) and regulated 
accordingly. 

Notwithstanding its importance, the assessment of risk may have some limitations 
when it comes to the outcomes and implications of AI systems. In fact, risk is 
understood as a normative notion associated with potential negative consequences, and 
it is often characterized by a distinct probabilistic component. More specifically, when 
referring to the risk of an event x, we typically imply that we can meaningfully assign 
a probabilistic value to the occurrence of x. This possibility is not always feasible when 
it comes to AI systems and the potential effects of their use. This contribution contends 
that talk of risk in AI should make room for the notion of uncertainty, both in 
quantifiable and unquantifiable forms. While our analysis is distinctively philosophical 
in scope and methodology, we believe it may be used as a theoretical ground for 
devising risk assessment practices in AI.  

In Section 2, the notion of risk is presented, paying particular attention to multi-
component approaches to risk and their quantifiable uncertainties, with a specific focus 
on AI-related risk. Then, in Section 3, the notion of severe uncertainty is introduced as 
a way to better understand and assess those cases where uncertainty cannot be 
meaningfully quantified. We will focus on the use of general-purpose AI systems as 
paradigmatic examples of a context in which this dimension of severe uncertainty is 
particularly relevant. Section 4 concludes the chapter by discussing possible future lines 
of research. 

2 Risk and its components 

Providing a univocal characterization of risk is not an easy task, for non-technical 
understandings of this notion come together with a number of technical definitions. 
Among these, the one provided by the Royal Society in 1983 is often referred to as the 
“classic” one, equating risk with “the probability that a particular adverse event occurs 
during a stated period of time, or results from a particular challenge” (Royal Society, 
1983). Needless to say, it does not all come down to probability. As a matter of fact, 
assessing risk typically involves some form of expectation in which the probability of 
the unwanted event becomes the weight for the magnitude of its consequences: a higher 
magnitude might counterbalance a lower probability of occurrence, and vice versa. 
Still, probability is usually required in many definitions of risk. 

Among other things, this way of understanding risk seems to be at the basis of the 
AI Act, that explicitly defines risk as “the combination of the probability of an 
occurrence of harm and the severity of that harm” (Art. 3, 2). However, it is not the 
only way to approach risk, in particular when it comes to designing risk-mitigation 
policies and interventions. Most notably, approaches adopted in the domain of disaster 
risk mitigation understand risk as the result of the interaction between three different 
components: hazard, exposure, and vulnerability (UNISDR, 2015). Hazard refers to the 
source of potential harm, exposure to the people and resources that could be harmed, 
and vulnerability has to do with how much what is exposed is susceptible to the impacts 
of the hazard. As an example, consider seismic risk. In this case, the hazard component 
refers to the earthquake itself, and its assessment involves estimates concerning both 
the probability and the magnitude of the earthquake. When it comes to exposure, 
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instead, we focus on what could be harmed by the earthquake, considering both people 
and material assets (e.g., buildings and infrastructures) that are found in the seismic 
hazard zone. Finally, one should take into account the circumstances and measures that 
could render these individuals and assets more or less susceptible to the potential harm: 
in the case of an earthquake, relevant elements could be the seismic safety standards of 
the potentially affected buildings, the existence of response plans, and the availability 
of temporary shelters. 

Distinguishing between the different components we have just seen allows us to 
intervene on several fronts to reduce risk. Now, reducing the hazard is not always 
possible, especially in the case of some natural risks: we simply cannot prevent an 
earthquake from occurring. However, there are many cases, especially those in which 
the hazard is related to human action, in which there is much we can do (e.g., we might 
relocate polluting factories away from population centers, or withdraw from the market 
a potentially dangerous technology). At the same time, we can intervene on the 
exposure. In the case of seismic risk, the most straightforward way to do this involves 
limiting the number of people and assets in the areas that are more likely to be affected 
by earthquakes. Finally, efforts can be made to reduce the vulnerability of such people 
and assets by intervening on buildings to improve their safety, designing evacuation 
plans, and so on. 

While the domain of natural risk offers intuitive examples of how different risks can 
be better analyzed and managed by distinguishing their components, nothing prevents 
us from applying the same kind of analysis to technological risks – that is, risks 
stemming from the use of technological artifacts.3 AI systems make no exception. On 
the contrary, thinking of AI-related risk through the conceptual and methodological 
lens of multi-component analyses of risk allows us to understand how and why 
significantly different kinds of AI systems involve non-negligible levels of risk.4  

In some cases, AI systems strike us as involving considerable levels of risk as a result 
of the hazard’s magnitude. Let us take a look at the AI Act’s Annex III, listing (some 
of) the systems that are considered as “high-risk” within the scope of the Act, and are 
therefore subject to stricter regulation. Among these, we can find AI systems that serve 
as “safety components in the management and operation of critical digital 
infrastructure, road traffic and the supply of water, gas, heating and electricity”, or 
systems used by law enforcement. It is fairly straightforward that malfunctions in such 
systems directly result in potentially harming events. The failure of an AI system used 
to manage road traffic can result in life-threatening accidents, and a system used to 
predict recidivism in courts can be affected by biases that may ultimately result in unfair 
judgments and unjustified detention (Angwin et al., 2016). In these cases, regardless of 
the levels of exposure and vulnerability, the fact that these systems involve high levels 
of hazard seems to be enough for labeling them as “high-risk”. 

The reasoning is diametrically opposite when it comes to those systems that qualify 
as highly risky due to their affecting and/or being used by a considerable number of 
people. In this regard, recommender systems are the most prominent example, 

 
3 Note that the dichotomy between natural and technological risks is not meant to be always 

completely exhaustive (Hansson, 2016). 
4 For a detailed analysis of a multi-component approach to AI-related risk, see (Zanotti, Chiffi, 

Schiaffonati, 2024). 
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especially those implemented in the so-called very large online platforms (VLOPs).5 In 
these cases, the potentially low levels of hazard and vulnerability are negatively 
counterbalanced by significantly high levels of exposure. 

Finally, some systems might qualify as high-risk as a result of the vulnerability of 
their users. Examples abound. For instance, AI-systems – including intelligent robotic 
systems – are increasingly used in the context of education and elderly care (Miyagawa 
et al., 2019; Tanaka et al., 2015). In these cases, even assuming low levels of hazard 
and exposure, the vulnerability of the people using or being affected by AI systems 
compels us to guard against potential unwanted outcomes and accordingly treat the 
involved technologies as high-risk ones. 

We have now seen how adopting a specific approach to risk, namely a multi-
component analysis, can help us better understand AI-related risk. The two general 
features of risk that have been partially anticipated, however, remain valid. First of all, 
risk refers to the possible occurrence of an unwanted event, of something that is 
negatively valued. This is immediately evident in the classic definition of risk, that 
explicitly refers to adverse events, and it is clear in multi-component analyses of risk, 
that understand hazard as the source of harm. Accordingly, when referring to AI-related 
risk, we always focus on the negative potential consequences of AI systems’ 
deployment. The second feature that typically characterizes conceptions of risk is that 
they involve the possibility of a meaningful probabilistic evaluation of the unwanted 
events in question.6  

Sometimes, probabilistic risk assessment is assumed and conducted by using point-
like probabilistic values, since we trust such probabilities. This can be a good choice 
when the uncertainty and complexity of the risk are not particularly noteworthy. This 
is what typically happens in textbook cases and idealized scenarios: if we bet on dice 
games and the dice is a fair one, we know exactly which our risk of losing is. However, 
more commonly some quantifiable forms of uncertainty are acknowledged within risk, 
and this is why risks may be quantified and evaluated by means of probabilistic 
intervals, second-order probabilities, imprecise probabilities, belief-functions, 
possibility theories, and fuzzy logic, just to mention some of these methods (Hansson, 
2018; Denœux et al., 2020a, 2020b).  AI makes no exception. On the contrary, 
providing point-like probabilities may be hard in the case of AI systems’ deployment, 
for such systems are often used in complex contexts in which unanticipated 
circumstances might influence the course of events, and their being often relatively new 
technologies may result in a paucity of data concerning their use and its possible 
negative outcomes. 

3 AI-related risks and severe uncertainty 

Taking stock, we have seen how the notion of risk is associated with the possibility of 
making probabilistic estimates about unwanted events and their outcomes. True, some 
components of uncertainty are typically involved in real-world scenarios, for it is often 

 
5 According to the European Digital Services Act, a platform qualifies as a VLOP if it has more 

than 45 million users per month in the EU (DSA, 2022). 
6 In the literature, these situations are understood as “known unknowns” (Hansson, 2009).  
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hard to assess risk by means of point-like probabilistic values, and AI makes no 
exception. Still, the uncertainty in question can be quantified. However, this is not 
always the case: several types of uncertainty exist, and not all of them can be 
meaningfully quantified (Hansson, 2022). In this section, we analyze how non-
quantifiable uncertainty may play a role in the assessment of AI-related risk. Note that, 
while we focus on the way risk (and quantifiable forms of uncertainty) differ from non-
quantifiable forms of uncertainty with respect to our probabilistic knowledge of 
possible scenarios, other differences exist. Most notably, we have seen how risk is a 
normative and evaluative concept with a negative connotation. This does not always 
happen with uncertainty. On the contrary, some forms of uncertainty are usually 
assumed to be possible triggers for technological innovation (Chiffi, Moroni, Zanetti, 
2022).   

Based on what we have seen in the previous section, risk assessment seems to depend 
on our evaluation of the potential unwanted events in question, their consequences and 
contexts of occurrence. For instance, in the case of seismic risk, assessing exposure 
requires to possess reliable knowledge about the location and extension of the 
potentially affected area as well as the number of people, buildings and infrastructures 
therein. In addition, up-to-date information concerning (among other things) the 
existence of evacuation plans and buildings’ safety standards is needed to evaluate the 
vulnerability of exposed people and assets. All of this straightforwardly applies to the 
case of AI. Suppose you want to estimate the risk associated with the deployment of a 
certain AI system. First, you need to identify possible inaccuracies, malfunctions, 
misuses, and more generally all unintended and unwanted consequences resulting from 
the deployment of the system, and possibly associate them with a probability. Then, 
you must have a sufficiently precise idea of the people and assets exposed to such 
consequences. Finally, you should be able to assess their vulnerability by considering 
all those factors and circumstances that make them more or less prone to be harmed by 
the potential events in question. 

While this might be doable for some AI systems and in some contexts (e.g., AI 
systems based on symbolic techniques to be used in controlled environments), it is not 
always possible. In some cases, it might be hard to make predictions on the possible 
inaccuracies and malfunctions of AI systems, often due to their complexity and 
working opacity. In addition to this, we might not be able to anticipate their possible 
uses, and therefore their misuses, and identify who could be affected by their negative 
outcomes. As we will see in a moment, such difficulties might be due to the fact that 
some kinds of AI systems can be adapted to a wide variety of uses and applications. On 
top of that, we should keep in mind that, in many cases, the technologies we are 
referring to are relatively recent, and we largely lack data on their real-world use that 
could inform our predictions.  

In the literature, analogous situations are captured through the notion of severe 
uncertainty. Severe uncertainty is typically conceived in open contraposition to 
probabilistic conceptualizations of risk such as the Royal Society’s one we have seen 
in Section 2. Consider the (fair) dice game example. In this case, we have exhaustive 
and reliable knowledge of both (i) the possible outcomes of the roll of the dice and (ii) 
the probability associated with each outcome. 

In situations of severe uncertainty, things are less clear. For a specific set of events, 
we might be able to anticipate the possible outcomes while ignoring their probability 
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distribution. Many of the recent and most impactful AI technologies seem to be used in 
and give rise to contexts of severe uncertainty. The example we propose to consider is 
that of so-called general-purpose AI systems (GPAIs). This expression, that for the 
purpose of this chapter we take to be largely overlapping with the one of foundation 
models (Bommasani et al., 2022), refers to any AI system that can “accomplish or be 
adapted to accomplish a range of distinct tasks, including some for which it was not 
intentionally and specifically trained” (Gutierrez et al., 2023). The class of GPAIs 
includes different models and systems, from those designed for computer vision to 
those for multimodal processing. Among these, however, Large Language Models 
(LLMs) are increasingly widespread, especially after OpenAI’s decision in November 
2022 to implement their model GPT3.5 in a freely available chatbot with a user-friendly 
interface. From that moment on, different companies and developers rushed to offer 
easily accessible LLM-based platforms at users’ fingertips.  

When it comes to these systems, assessing risk is particularly difficult. First of all, 
the identification of malfunctions, misuses, and unintended consequences might be 
quite critical. As a matter of fact, their being general-purpose models, so capable of 
tasks for which they have not been specifically designed and trained, makes it very 
difficult to anticipate all the potential consequences of their use. Moreover, the fact that 
these systems are most of the time running proprietary software (not an open source 
one) further exacerbates the possibility to predict malfunctions. True, many possible 
scenarios of malfunctions and abuses can be foreseen. For instance, once we know that 
certain GPAIs can be used for code generation, we can easily anticipate that someone 
may jailbreak them to write malware. However, it is not clear how we could associate 
a probability to this scenario before the system’s large-scale deployment. 

Analogous considerations can be made when it comes to estimating the exposure 
component of the risks involved in the deployment of GPAIs. Many GPAIs are now 
implemented in free and accessible platforms, and the number of people making use of 
these systems in their daily life is increasing – again, their flexibility makes them 
potentially applicable to significantly different tasks and in a wide range of situations. 
Such an evolving scenario also makes it very difficult to have a sufficiently precise idea 
of the people exposed to their consequences.  

Finally, in light of this, it is not hard to see the difficulties involved in the attempt 
to estimate the component of vulnerability associated with these systems’ risk. To do 
so, as a matter of fact, we should be able to identify both the potential harmful uses of 
GPAIs as well as those affected by their possible negative consequences. And again, 
this is not an easy task. 

Summing up, we could say that the extreme flexibility of some AI systems, GPAIs 
in particular, plays a major role in raising severe forms of uncertainties: as their possible 
uses are wide and open, it is hard to anticipate and assess all of them and thereby 
estimate the associated levels of hazard, exposure and vulnerability. These forms of 
uncertainty are hardly quantifiable and represent a significant challenge in assessing 
AI-related risk, but cannot be overlooked in a rigorous and complete discussion of AI 
technologies and their societal implications.  
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4 Conclusion 

We discussed some possible difficulties in assessing the risks associated with the use 
of AI systems. Starting from a focus on the components of risk, namely, hazard, 
exposure, and vulnerability, we highlighted that traditional risk analysis often relies on 
probabilistic information, which may not be always readily available or reliable for the 
outcomes of AI systems’ deployment. We suggested that incorporating the concept of 
uncertainty into AI-related risk analysis is beneficial not only when uncertainty is 
quantifiable but also, and more importantly, when it is not quantifiable. This is 
particularly relevant in cases of severe forms of uncertainties. We explored general-
purpose AI systems as an illustrative example of technology where severe uncertainty 
may play a pivotal role in risk assessment. Among other things, this uncertainty arises 
due to the considerable flexibility in these systems’ potential applications. 

In future lines of research, we will investigate the role of multi-risk analysis related 
to AI, wherein various risks may interact mutually, potentially producing domino or 
cascade effects7. To this end, we will draw upon the rich literature on engineering 
safety, risk assessment and uncertainty (e.g., Burton, Mcdermid, Freng, 2023), in 
particular in the context of AI (e.g., NIST, 2023). We will also explore the impact of 
unforeseeable events, sometimes referred to as “unknown unknowns,” on AI-related 
risks. These events can be challenging not only to quantify but also to predict accurately 
and are typically associated with socio-technical systems, which may pose wicked 
problems to society – complex issues often intertwined with policy and planning (Rittel 
& Webber, 1973; Nordström, 2022). Such problems are difficult to address and even 
analytically define. A rigorous epistemological analysis of uncertainty in AI, however, 
will hopefully put us in a better position to deal with them. 
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