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Abstract. This position paper accompanies a presentation and discussion
at AISoLA 2023 on the topic of how (generative) AI influences software
engineering, namely, the development and verification of software pro-
grams. We outline a few opportunities and challenges that are posed by
the application of AI. AI-based techniques can be an efficient method to
produce software code. Not only this, AI can also be efficient in produc-
ing invariants that help proving correctness of software programs. But
unfortunately, the results generated by AI-based approaches are often still
imprecise or wrong: Code produced with the help of AI often does not
satisfy the specification, and AI-generated invariants are often not helpful
to prove the correctness of the program. The solution is to safeguard the
process by independently checking the results using verification witnesses
and witness validation. The goal of this paper is to convince readers that
software witnesses are important and that independent result validation
is of utmost importance to ensure correctness.
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1 Motivation

Generative AI has applications in almost all areas of software engineering, from
requirements engineering over code generation to quality assurance. This dis-
cussion at ISoLA focused on three applications of AI (1–3 below) that are all
important since they affect the correctness of the software, have a large potential
for improvement through AI, and, on the negative side, currently still suffer
from imprecision of the AI techniques. The three approaches share another com-
monality: Their negative impact on the correctness can be addressed by the
same solution: witness-based validation of result.

(1) Generative AI can be used to suggest software code. It seems that the
more integrated this technique is in the software-development process, the more
productive it becomes. Recent empirical studies show that approaches like GitHub
Copilot can significantly improve the productivity, especially if developers are
trained on how to use them. There is a large body of literature on this topic

https://orcid.org/0000-0003-4832-7662


2 Dirk Beyer

describing the state of the art [1, 2]. The problem is that generated code of-
ten contains bugs that are sometimes obvious but sometimes quite subtle and
therefore missed by developers.

(2) Whenever software has to solve an intractable problem, that is, a prob-
lem for which no efficient algorithm is known, heuristics are applied that work
well in certain circumstances [3]. Often, there are many different heuristics from
which the developer or user can choose. For example, in software verification,
the tools PeSCo [4, 5] and Graves-CPA [6, 7] use an ML-based algorithm selec-
tion to choose the most promising configuration from the software-verification
framework CPAchecker [8, 9]. The problem here is that the best configura-
tion selected by the AI might turn out to be the wrong choice and produce
a wrong result and another configuration producing the correct result remains
unused. For example, the AI may select a configuration without pointer analysis
(because it might have been fast on other programs without pointers during
training) for a program that has pointers.

(3) AI can be used to generate invariants that accelerate the construction of
a proof of correctness. Machine learning has been used to infer loop invariants
for programs [10]. Also, termination arguments [11] have been derived by using
neural networks to represent ranking functions. Generative AI can be used as
code pilots for interactive theorem proving [12]. A recent study showed that
generative AI (ChatGPT) can be used to generate loop invariants that help
Frama-C prove the correctness of a program [13]. The problem is that the
suggested predicates might not be valid invariants, might not be inductive, or
might not aid in proving the safety property.

Imprecise AI-based techniques should be safeguarded by techniques that
verify the result, like witness-based result validation.

2 Solution

We would like to advocate verification witnesses as a means towards solving the
above-mentioned problems, that is, by safeguarding software development and
verification with the help of verification witnesses.

2.1 Related Work

Traditionally, verifiers returned claims of the form true (system satisfies the
specification) or false (system violates the specification) and the user is left
alone with the result. Any kind of useful information that explains the result
would improve the situation. The formal-methods community has established
the practice of witness validation, in the area of software verification [14, 15],
termination checking [16], SAT solving [17, 18], SMT solving [19, 20], and hardware
model checking [21, 22]. Witnesses were also used for graph algorithms [23]. The
technique of execution reports [24] was investigated to provide analysis results
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in a more structured way, and the format SARIF [25] is supported by some
program-analysis tools. Information exchange also enables the integration of tools,
for example, the Evidential Tool Bus (ETB) [26, 27, 28] supported tool integration
by producing claims that are supported by evidence, and the Electronic Tools
Integration (ETI) [29, 30, 31] offered a platform and web service for integrating
model-checking tools. Also cooperative verification [32, 33, 34] requires information
in standard exchange formats and tools should be collected using a standard
format with information about the tools [35].

2.2 Verification Witnesses

Nowadays, software verifiers produce witnesses to certify their result [14, 15, 36].
The competition on software verification (SV-COMP) uses verification witnesses
since 2015 [37]. The most recent advancement is that the competition on soft-
ware verification [38] has for its 2023 edition introduced a new track for the
evaluation of tools for witness validation [39]. Furthermore, to make verification
witnesses more human-readable and more concise, and semantically well-defined,
the community developed a new version 2.0 of the widely supported exchange
format for verification witnesses [40]. This new standard format was immediately
adopted in the competition in its 2024 edition [41].

Software verification is the process of producing, for a given program P and
specification φ, a verdict (from true, false, and unknown) and a verification
witness w (a correctness witness for verdict true and a violation witness for
verdict false). The verdict true means that φ holds for P and the verification
tool has constructed a proof of correctness π (denoted as π : P |= φ). In this case,
the correctness witness contains program invariants aiding the construction of
the correctness proof. The verdict false means that φ is violated by P and the
verification tool has constructed a counterexample to the proof of correctness π
(denoted as π : P ̸|= φ). In this case, the violation witness describes at least one
error path through P that violates φ, and for the proof of violation it suffices to
analyze the semantics of the program along the described error paths.

Software validation in this context is the process of reestablishing a verdict, for
a given program p, specification φ, and verification witness w. To reconstruct a
proof of correctness π′ : P |= φ, the validator takes the invariants stored in w and
checks if they hold. If this is the case, then the validator can use the invariants as
lemmata in its own proof of correctness π′. If the invariants in the witness hold
and the program satisfies the specification, then the witness is valid for verdict
true. To reestablish a verdict false, the validator explores the paths described
by the witness and checks if they are feasible. If a feasible path is found, then
the validator can use the path to check whether the strongest post-condition of
the operations along the path leads to a specification violation. If a feasible path
described by the witness violates the specification, then the witness is valid for
verdict false. We refer to the literature [15, 40] for more details.
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Program:

1 #include <assert.h>
2 extern unsigned char
↪→ __nondet_uchar(void);
3

4 int main() {
5 unsigned char n =
↪→ __nondet_uchar ();

6 if (n == 0) {
7 return 0;
8 }
9 unsigned char v = 0;

10 unsigned int s = 0;
11 unsigned int i = 0;
12 while (i < n) {
13 v = __nondet_uchar ();
14 s += v;
15 ++i;
16 }
17 assert(s >= v);
18 assert(s <= 65025);
19 return 0;
20 }

Specification:

All assertions in the program must hold.

Witness:

1 - entry_type: invariant_set
2 metadata:
3 format_version: "2.0"
4 producer:
5 name: "CPAchecker"
6 content:
7 - invariant:
8 type: loop_invariant
9 location:

10 file_name: "inv -a.c"
11 line: 12
12 column: 3
13 function: main
14 value: "s <= i*255 &&

↪→ 0 <= i && i <= 255 &&
↪→ n <= 255"

15 format: c_expression

Fig. 1: Example C program similar to inv-a.c (left, adopted from [15]), satisfying
the given specification (top right), and correctness witnesses in format 2.0 (right,
metadata shortened, with a single nontrivial invariant, adopted from [40])

2.3 Example

For illustration, we show an example from the literature [40] in Fig. 1 for a
verification witness that contains a loop invariant: The figure shows a C program
(left) and a specification (top right), together with a correctness witness in
format 2.0 (right). The program mainly consists of a loop in which n values
are read into variable v and summed up in variable s. The specification is to
ensure that no assertion is violated. The first assertion requires that the sum s
is at least as large as the last read value v. The second assertion requires that
the sum s is less than or equal to 65025.

The creative task for program verification is now to come up with a loop
invariant. For example, let us consider s ≤ i∗255∧0 ≤ i∧ i ≤ 255∧n ≤ 255. This
predicate captures the knowledge that the upper bound of variable s is i times
the largest possible value for v. Since variable v has type unsigned char, its
largest possible value is 255. It further tells us that variable i has only values
from 0 to 255, because it starts with 0, is counted up by 1, and its largest value
is the largest value of n, which is 255. The invariant also tells us that the value
of n is bound by 255, because it is of type unsigned char.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/svcomp24/c/loop-invariants/linear-inequality-inv-a.c
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Table 1: Witness Validators in SV-COMP 2024, with literature references, the language
they support, since when the tools exist, and which formats they support (‘viol’ short
for violation witnesses, ‘corr’ short for correctness witnesses)

Validator Reference Lang. Since Supported Formats
1.0-viol 1.0-corr 2.0-viol 2.0-corr

CPAchecker [14, 36, 42] C 2015 ✓ ✓ ✓ ✓

UAutomizer [14, 36] C 2016 ✓ ✓ ✓

CPA-witness2test [43] C 2018 ✓

CProver-witness2test [43] C 2018 ✓

MetaVal [44] C 2020 ✓ ✓

NITWIT [45] C 2020 ✓

WitnessLint [40] C 2021 ✓ ✓ ✓ ✓

Dartagnan [46] C 2022 ✓

GWIT [47] Java 2022 ✓

Symbiotic-Witch [48] C 2022 ✓

WIT4JAVA [49] Java 2022 ✓

ConcurWitness2Test [50] C 2024 ✓

Goblint [51] C 2024 ✓

JCWIT Java 2024 ✓

LIV [52] C 2024 ✓

Mopsa [53] C 2024 ✓

Witch [40, 54] C 2024 ✓

This predicate has three interesting properties: (a) It is a loop invariant, because
it holds at every iteration before the evaluation of the loop head (beginning of
the loop). (b) It is inductive, because if assumed at the loop head, it holds again
at the next visit of the loop head. (c) It is safe, because it implies that the safety
specification holds. The latter is true because both assertions hold. The first
assertion holds because after v (with a value in the interval [0, 255]) is added
to s, the value of s is at least as large as the value of v. The variable s cannot
overflow because it is of type unsigned int, which is sufficiently large and s
does not grow larger than 65025 (see next assertion). The second assertion holds
because s is always less than or equal to the product of the largest possible values
for variables n and v, which are both bound by 255.

No matter how a verification tool came up with such an invariant, witness
validation is available to safeguard the verification result: A witness-based result
validator takes as input the program, the specification, and the witness, and checks
whether the claimed invariant really holds and the program fulfills the specification.

Figure 1 shows a correctness witness on the right. Besides the invariant,
the witness format captures all necessary and useful information, such as the
precise location at which the invariant holds, the format in which the invariant is
specified, that the invariant is a loop invariant, and metadata about the producer
of the witness and the verification task.

https://cpachecker.sosy-lab.org
https://ultimate-pa.org
https://cpachecker.sosy-lab.org
https://www.cprover.org/cbmc/
https://gitlab.com/sosy-lab/software/metaval
https://github.com/moves-rwth/nitwit-validator/
https://github.com/sosy-lab/sv-witnesses
https://github.com/hernanponcedeleon/Dat3M
https://github.com/tudo-aqua/gwit
https://github.com/ayazip/witch-klee
https://github.com/Anthonysdu/wit4java
https://github.com/ftsrg/ConcurrentWitness2Test
https://goblint.in.tum.de/
https://github.com/Chriszai/JCWIT
https://gitlab.com/sosy-lab/software/liv
https://gitlab.com/mopsa/mopsa-analyzer
https://github.com/ayazip/witch-klee
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Fig. 2: Number of witness validators evaluated in SV-COMP for each year (first-
time participants on top), taken from 2024 report [41, page 317]

2.4 Available Witness Validators

Validation of verification results becomes more and more important, as the research
on witnesses and their validation matures [39]. The most recent competition on
software verification has compared 17 validators [41] (including a syntax checker
WitnessLint). There are currently two kinds of verification witnesses considered:
correctness witnesses and violation witnesses. Also, there are two versions of the
format for verification witnesses: The first format, version 1.0, is from 2015 [14]
and based on GraphML (XML) [55]. It describes a witness automaton. The
second format, version 2.0, is from 2023 [40] and based on YAML format. In
sum, there are four combinations of witness kind and witness format, version 1.0
for violation (‘1.0-viol’), version 1.0 for correctness (‘1.0-corr’), version 2.0 for
violation (‘2.0-viol’), and version 2.0 for correctness (‘2.0-corr’). Table 1 lists all
validators, their references, supported languages, and supported formats. Figure 2
shows how the number of available witness validators developed over the last ten
years. There is strong interest in developing tools for validation of verification
results, which is a valuable enabling factor for the use of imprecise techniques
in verification tools that compute invariants or error paths.

2.5 Safeguarding Software Development

Now we are equipped with witnesses and can address the three problems outlined
in the motivation Sect. 1. First, programs should be accompanied by behavioral
specifications and verification should be applied to ensure that the program fulfills
the specification. Ideally, the programs are annotated with assertions [56], which
are an in-code form of specification. If code is AI-generated, the assertions (and
other annotations [57]) should also be generated, or manually added as the contract

https://github.com/sosy-lab/sv-witnesses
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between the generated code and its context. As the volume of AI-generated code
will grow in the near future, but the precision of the code will still be suboptimal,
the correctness of the software must be ensured by verification.

Second, if a particular verification tool is selected or automatically configured
(for example by an AI-based selection), than the result of the verifier —that is,
the verification witness— must be validated by a witness validator. This way,
the verification process is less vulnerable to the risk that a verification tool was
wrongly configured and produced a wrong result.

Third, and finally, there is no risk in using AI-generated invariants if the
invariants are validated by a witness validator. That is, the generated invariants
are put into a correctness witness and then given together with the program to
the validator to be checked for validity. Note that it is not important for the
validation process whether the invariants are annotated in the program or given
as a correctness witness: both are interchangeable [58].

3 Conclusion

Imprecise approaches (such as AI-based code generation and AI-based invariant
generation) can safely be used in the development and verification of software
systems if the results are independently checked for correctness. That is, gen-
erated code should be analyzed to make sure it adheres to the specification,
and generated invariants should be checked by witness-based result validators.
The competition on software verification (SV-COMP 2024) has evaluated 16
validators for software witnesses (correctness witnesses and violation witnesses)
and shown that their quality is very good. In conclusion, it seems that impre-
cise AI-based techniques can be empowered by techniques that safeguard the
result, like witness-based result validation.
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