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Abstract. This work explores the utilization of a Large Language Model
(LLM), specifically OpenAI’s ChatGPT, to develop a program as a se-
quence of refinements. Traditionally in formal methods literature such
refinements are proven correct, which can be time consuming. In this
work the refinements are tested using property-based testing. This ap-
proach addresses the problem of ensuring that the code generated by an
LLM is correct, which is one of the main challenges of code generation
with LLMs. Programs are developed in Scala and testing is performed
with ScalaCheck. This approach is demonstrated through the develop-
ment and testing of a classical bridge controller, originally presented in
documentation for the refinement-based Event-B theorem prover.

1 Introduction

Neural program synthesis, based on Large Language Models (LLMs) which are
trained on open source code, are quickly becoming a popular addition to the
software developer’s toolbox. Services like, for instance, Open AI’s ChatGPT1,
Google’s Gemini2 (the next generation of Bard), and GitHub’s Copilot3, can
generate code in many different programming languages from natural language
requirements entered as “prompts”. A system like ChatGPT is for example par-
ticular good at answering questions like “how do you do X in programming
language Y?”.

Prompt-based programming, however, seems to work best for development of
smaller programs. It currently appears infeasible to generate large and complex
programs from natural language prompts. It is also not clear how good such a
system is for generating code that strays away from common patterns. We refer
to this as the complexity problem. Furthermore, neural systems do not come with
guarantees of producing correct, safe, or secure code, what we shall refer to as
the verification problem.
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We propose test-based refinement to address these two problems. Program
refinement is an old idea, but usually performed with proofs of correctness [6,
1, 16, 13, 2]. We experiment with this concept but using testing. Specifically, to
approach the complexity problem, we propose a method based on program re-
finement, where a program is developed in a step-wise manner, starting with a
very high-level abstract program, and then refining it iteratively, towards a fi-
nal implementation. At each refinement step, the LLM can provide assistance by
generating code suggestions and refining existing code snippets. To approach the
program verification problem, we suggest to apply automated testing, including
test-case generation, to test that each refinement implements the previous step.
Literature on program refinement usually approaches the verification problem as
a deductive proof problem. Proofs are, however, hard to carry out for humans,
even with automated proof tools.

This work is in line with the TriCo (Triple Co-Piloting) principle to soft-
ware development described in [3], which argues that implementation, (formal)
specification, and tests should be developed hand-in-hand, assisted by machine
learning, such as e.g. an LLM. We do, however, not address the formal specifi-
cation part of TriCo. In general, there has been published numerous articles on
the use of LLMs for software development. The paper [7] provides an overview
of some of these, in addition to reflecting on how LLMs can be used for soft-
ware development and quality assurance. Closest to our work is the contribution
in [9]. The authors first instantiate computer adventure games with the help
of ChatGPT from natural language requirements. Then, they mine finite-state
models from the code and check their correctness with model checkers. A yet
different approach is to verify neural networks themselves, as discussed in [8].

Our experiments are carried out by developing a classical bridge controller,
originally introduced as part of the tutorial for the Event-B theorem prover
[2], where a proof-based refinement is performed. Our programs are written in
the Scala4 programming language. Testing is performed using the ScalaCheck5

property-based testing library. Property-based testing is a method for defining
general properties the code should satisfy, quantifying over the input domains
(similar to universal quantification in mathematics), and the ScalaCheck library
automatically generates test data to verify those properties across a wide range
of inputs. Property-based testing is also mentioned in [3] as a way of ensuring
correctness in the TriCo approach. We use property-based testing in two ways.
First we use property-based testing as a way to test each single program, follow-
ing the original intent of ScalaCheck. Second, we use property-based testing to
test the refinement relation between two versions of a program.

We demonstrate the approach with two different refinements of the bridge
controller. The first refinement follows the Event-B proof of the bridge controller,
which describes a system as a set of events, each consisting of a precondition and
an action having side effects on a shared state. Conceptually one outer loop re-
peatedly picks an event where the precondition is true and executes the action,

4 https://www.scala-lang.org
5 https://scalacheck.org
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until no event preconditions are true. This concept has its roots in Dijkstra’s
language of guarded commands [11], which is Turing complete. The second re-
finement follows a more classical object-oriented approach, the way many would
normally write programs in a language like Scala.

The objective of this work is to (i) explore writing a program iteratively in
steps using program refinement, and test the refinements; (ii) augment refine-
ment tests with property-based testing; and (iii) use ChatGPT to generate code,
refinement tests and property-based tests. All code should be (and was largely)
generated by ChatGPT. Note that we are using ChatGPT’s web-based interface
Version 4 (and in some cases Version 3 when the upper limit per day for use of
Version 4 was reached). We did not use any APIs to the LLM. We also did not
use Copilot or any such IDE.

The paper is structured as follows. Section 2 introduces the background for
this work, including the well established theory of refinement, in particular its
proof theoretic focus, as well as property-based testing. Section 3 explains how
one can test refinements instead of proving them correct. Section 4 introduces the
bridge controller example. Section 5 presents the guarded command approach
to test-based refinement in Scala, while Section 6 presents the object-oriented
approach. Finally, Section 7 concludes the paper with observations.

2 Background

In this section we introduce the background for the work, including the estab-
lished notions of refinement and property-based testing.

2.1 Refinement

Refinement is the idea of developing a system as a series of specifications (which
can be programs), each refining the previous specification, except the first, which
constitutes the top-level specification of the system. An implementation at the
bottom is then defined as a refinement of the top level abstract specification
through transitivity of the refinement relation. A system can be a physical sys-
tem, a software system, or a mix of the two.

Traditionally in formal methods literature, refinements are proved correct
using refinement mappings. In this section we formalize this concept. The the-
ory presented is a minor modification of the theory developed by Abadi and
Lamport [1] with the addition of observation functions and invariants as de-
scribed in [12] (the definitions below are from [12] with a few modifications).
We introduce the concepts of transition systems, execution traces, invariants,
refinements, and refinement mappings. Specifications are written as transition
systems. A transition system is defined as follows.

Definition 1 (Transition System). A transition system is a five-tuple
(Σ, I,N,Σo, π) where

– Σ is a state space.
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– I ⊆ Σ is the set of initial states.
– N ⊆ Σ × Σ is the next-state relation. Elements of N are denoted by pairs

of the form (s, t), meaning that there is a transition from the state s to the
state t.

– Σo is the state space of observations.
– π : Σ → Σo is an observation function.

The observation function π in the above definition, which when applied to a
state in Σ returns an observation in Σo, allows us to compare traces from two
transition systems using a shared state space Σo in the case where the internal
states Σ of the two systems differ.

An execution trace is an infinite sequence σ = ⟨s0, s1, s2, . . .⟩ of states6, where
the first state satisfies the I predicate and every pair of adjacent states is related
by the N relation. We let σi denote the i’th element si of the sequence. The
traces of a transition system can be defined as follows.

Definition 2 (Traces). The traces of a transition system are defined as follows:

Θ(Σ, I,N,Σo, π) = {σ ∈ Σω | σ0 ∈ I ∧ ∀i ≥ 0 ·N(σi, σi+1)}

A projection function π applied to a trace ⟨s1, s2, . . .⟩ results in the projected
trace ⟨π(s1), π(s2), . . .⟩.

An invariant is a state predicate true on all states reachable from an initial
state via the next-state relation.

Definition 3 (Invariant). Given a transition system S = (Σ, I,N,Σo, π), then
a predicate P : Σ → B is an S invariant iff

∀σ ∈ Θ(S) · ∀i ≥ 0 · P (σi)

We can now define the concept of refinement.

Definition 4 (Refinement). A transition system S2 = (Σ2, I2, N2, Σo, π2) re-
fines a transition system S1 = (Σ1, I1, N1, Σo, π1) iff for every trace of S2 there
exists a trace of S1 with the same observed states:

∀σ2 ∈ Θ(S2) · ∃σ1 ∈ Θ(S1) · π1(σ1) = π2(σ2)

Note that it is here assumed that the abstract transition system S1 can perform
stuttering (no-op) steps where the state does not change, reflecting that the
concrete system S2 makes an internal move not corresponding to a state changing
move in S1.

This definition of refinement in terms of infinite traces, however, is not useful
for practical proofs or tests. For practical purposes, the notion of a refinement
mapping from a lower level transition system S2 to a higher-level one S1 is
introduced, allowing to reason about pairs of states.

6 A finite execution can be thought of as being represented by an infinite trace with
the last state of the finite execution being repeated infinitely.
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Definition 5 (Refinement Mapping). A refinement mapping from a transi-
tion system S2 = (Σ2, I2, N2, Σo, π2) to a transition system S1 = (Σ1, I1, N1, Σo, π1)
is a mapping f : Σ2 → Σ1 such that there exists an S2 invariant P (representing
reachable states in S2), where:

1. ∀s ∈ Σ2 · π1(f(s)) = π2(s)
2. ∀s ∈ Σ2 · I2(s) ⇒ I1(f(s))
3. ∀s, t ∈ Σ2 · P (s) ∧N2(s, t) ⇒ N1(f(s), f(t))

The main property is 3, expressing that a move on the concrete transition system
S2 simulates a corresponding move in the abstract transition system S1, see
Figure 1. We can now state the main theorem (which is stated in [1]):

Theorem 1 (Existence of Refinement Mappings). If there exists a refine-
ment mapping from a transition system S2 to a transition system S1, then S2

refines S1.

Defining the refinement mapping turns out typically to be easy, whereas proving
that it is indeed a refinement mapping (Property 3 in Definition 5) can be hard,
in particular discovering a suffiently strong invariant. As we shall see in Section
3 we will test this relationship instead of proving it.

f(s) f(t)

s t

N1

N2

f f

Fig. 1. Commuting refinement diagram.

2.2 Property-based Testing

Property-based testing (PBT) is a testing technique that tries to falsify a given
property by generating random input data and verifying the expected behaviour.
The motivation is to replace hand-written unit tests with property specifications
that are tested automatically. The first tool implementing this style of testing
was QuickCheck [10]. Properties can range from simple algebraic equations to
complex state machine models. Like in all model-based testing techniques the
properties serve as a source for test-case generation as well as test oracles. It is
a well-known testing practice in functional programming, but nowadays we see
a growth of applications outside its traditional domain, including automotive
software [5] and web-services [15, 4].

A simple example of an algebraic property is that the reverse of the reverse
of a list must equal the original list:

∀ xs ∈ List[T ] : reverse(reverse(xs)) = xs
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A PBT tool will generate a series of random lists xs, execute the reverse function
and evaluate the property. This test-case generation is realized via the composi-
tion of test-case generators. For the example above, the test-case generator for
lists will use a test-case generator for type T . In addition to default generators
for basic types, a user can define custom generators and mix them arbitrarily.

If a property is violated, a counter-example will be presented to the user. For
easier debugging, the counter-example is simplified in a process called shrinking.

The original QuickCheck tool was implemented in, and supported testing
of, Haskell programs, but has been ported to many programming languages
including FsCheck7 for C#, Hypothesis8 for Python, and ScalaCheck9 for Scala.
In this work we rely on the latter. In ScalaCheck the above property for integer
lists would be represented as follows:

1 property("reverse") = forAll { (xs: List[Int]) => reverse(reverse(xs)) == xs}

ScalaCheck will by default generate 100 random integer lists in order to test this
property.

3 Refinement and Testing

In this section, we present our AI-assisted method for developing programs with
LLMs. We will use step-wise refinement in order to develop a program itera-
tively from an abstract method down to a concrete implementation. Hence, the
LLM shall assist us in generating improved versions of an abstract program
that preserve the refinement mapping. In each refinement step, additional re-
quirements are considered while preserving correctness with respect to the more
abstract versions. Traditionally, the refinement relation is formally verified via
model checking, like in TLA [14], or via theorem proving, like in Event-B [2].

In our method, we propose a more lightweight approach, namely the auto-
mated testing of the refinement relation with the help of property-based testing.
More concretely, we use a refinement property and data generators to test if two
objects respect refinement.

For the testing of refinement, we can simplify the definition of refinement in
Definition 5. Assuming executable Scala methods to be tested, we can specialize
the general next-relation N to a next-function resulting in a simpler version of
Def. 5.3:

∀s ∈ Σ2 · P (s) ⇒ N1(f(s)) = f(N2(s)))

Note that this property directly corresponds to the commuting diagram in Fig-
ure 1. Hence, when testing if a method Nm

2 refines an abstract method Nm
1 ,

we simply initialize both objects to a state such that the refinement mapping f
and the invariants hold, then execute both mappings and check if the results are
equal under the mapping f .

7 https://fscheck.github.io/FsCheck/
8 https://github.com/HypothesisWorks/hypothesis
9 https://scalacheck.org
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1 property("Class C2 refines C1 for method m()") =
2 forAll(validStates) { object2: Class2 =>
3 val object1 = refinement_mapping(object2)
4 if (object1.guards && object2.guards) {
5 object1.m()
6 object2.m()
7 object1 == refinement_mapping(object2)
8 }
9 else true

10 }

Fig. 2. Scetch of a ScalaCheck property for testing that a method of Class1 correctly
refines its abstract version in Class0.

Figure 2 shows how such a refinement property can be realized in ScalaCheck.
The property checks for all states of the concrete class Class2 that a method
m respects refinement. A custom generator validStates randomly generates
objects of Class2 that also respect its invariant (Line 2). Hence, the invariant
check is part of this custom generator. Then, the refinement mapping is used
to construct or initialize the abstract version Class1 (Line 3). If the guards of
the methods are satisfied, both methods are executed and the equivalence of the
resulting object states is checked (lines 4–7).

Note that we may introduce new methods under refinement where no abstract
counterpart method exists. In such cases, we refine an abstract skip-method, i.e.
we simply need to test that the new method Nm

2 (object2.m) does not change
the abstract state. This latter case is also known as stuttering. In addition, we
need test-properties for checking that all methods preserve their (class) invari-
ants.

The bold idea, we are following here, is that we will prompt ChatGPT in
order to generate the test properties as well. One may argue that this gener-
ation of test-properties introduces another verification problem. Therefore, we
need to review the test-properties. Our hypothesis is that these declarative test-
properties are easier to review than the generated class implementations (code
review vs. specification review).

4 The Bridge Controller Example

In this section we outline the requirements for the system to be developed, a
bridge controller originally described in [2]. The objective is to develop a soft-
ware program, the controller, which controls the movement of cars on a bridge
connecting a mainland and an island, the environment, shown in Figure 3.

Cars can move from the mainland onto the bridge, and from there to the
island, and similarly in the other direction. The following requirements are de-
fined in [2], divided into requirements concerned with the functionality of the
controller, labeled Funi, and requirements concerned with the environment, la-
beled Envi.
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26 Controlling cars on a bridge

There are also some car sensors situated at both ends of the bridge:

The system is equipped with four sensors with two states: on or off ENV-4

These sensors are supposed to detect the presence of cars intending to enter or leave
the bridge. There are four such sensors. Two of them are situated on the bridge and
the other two are situated on the mainland and on the island respectively:

The sensors are used to detect the presence of a car entering or leaving
the bridge: “on” means that a car is willing to enter the bridge or to leave it ENV-5

The pieces of equipment which have been described are illustrated Fig. 2.1. The system
has two main additional constraints: the number of cars on the bridge and island is
limited:

The number of cars on bridge and island is limited FUN-2

and the bridge is one-way:

The bridge is one-way or the other, not both at the same time FUN-3

BridgeIsland Mainland

traffic light
sensor

Fig. 2.1. The bridge control equipment

Fig. 3. The bridge environment from [2].

Fun1: The system is controlling cars on a bridge connecting the mainland to an island.

Fun2: The number of cars on bridge and island is limited.

Fun3: The bridge is one-way or the other, not both at the same time.

Env1: The system is equipped with two traffic lights with two colors: green and red.

Env2: The traffic lights control the entrance to the bridge at both ends of it.

Env3: Cars are not supposed to pass on a red traffic light, only on a green one.

Env4: The system is equipped with four sensors with two states: on or off.

Env5: The sensors are used to detect the presence of a car entering or leaving the

bridge: “on” means that a car is willing to enter the bridge or to leave it.

Note that Fun3 describes what is commonly referred to as a one-lane bridge. In
the following text it will be referred to as a one-way bridge, like in [2]. In [2] the
bridge controller is developed in four steps (three refinements), first a mainland
and an island (without a bridge), then the bridge is introduced, then the traffic
lights, and finally the sensors. In this paper we shall just develop the two first
of these, including their refinement relation.

5 Guarded-Commands Development

In this first experiment we aim for developing a Scala program that is as close as
possible to Abrial’s original Event-B model of the bridge controller [2]. Event-B
follows a guarded-command style, i.e. a set of variables is iteratively updated
by guarded commands. A guarded command is a conditional assignment that is
enabled when the guard-condition is satisfied in a given state. In Event-B these
guarded commands are called events. If more than one event is enabled, one is
chosen non-deterministically.

In Scala, we can mimic this style with a class of methods with preconditions.
Each method resembles an event. Semantically, we assume that these methods
are non-deterministically called from the environment. If a precondition is not
satisfied, the state does not change and another method is tried. In this way, we
can write Event-B-like models in the Scala programming language. The main
difference is that we require executable events. In the following, we report about
our experience of letting ChatGPT write, refine and test the model.
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5.1 Initial Model

Abrial starts with a very abstract model, consisting of two events that increase
and decrease the number of cars on the island. In a first prompt, we tell ChatGPT
what we want using the variable and method names of Abrial’s model.

Prompt: Give me a Scala class Bridge0 that abstractly models an island
where at most d cars are allowed. A method ml in shall model a car
going from the island to the mainland. A method ml out shall model
the entering of a car from the mainland. At this level, the model state
shall only be a variable n, the number of cars on the island. The following
class invariant shall be respected: n shall be positive and not exceeding
d and d shall be greater than 0.

The initial result was correct, but the style was not what we aimed for: ChatGPT
produced a version with if-conditions, but we want preconditions. Furthermore
the counter variable n was initialized to zero, but we prefer a more general
parameterized initialisation. This is what we tell ChatGPT.

Prompt: The code compiles. Conditions are used, it would be better to
use preconditions. Furthermore, it would be better to make n a variable
parameter such that it can be set when the class is constructed.

This led to the following solution satisfying our requirements, which we name
GC.V1 (Guarded Commands Version 1).

1 class Bridge0(d: Int , private var n: Int = 0) {
2 require(d > 0, "d must be greater than 0")
3

4 // Ensure n starts off with a valid value
5 require(n >= 0 && n <= d, "Initial number of cars on the island is invalid"

)
6

7 // method to model the entering of a car from the mainland to the island
8 def ml_out (): Unit = {
9 require(n < d, "Number of cars on the island exceeds limit!")

10 n += 1
11 }
12

13 // method to model a car going from the island to the mainland
14 def ml_in(): Unit = {
15 require(n > 0, "No cars on the island to remove!")
16 n -= 1
17 }
18

19 def carsOnIsland: Int = n
20 } GC.V1.bridge

The above code is a parameterized Scala class with the maximum number of cars
d and the state variable n being parameters. Note that d is constant while n can
be changed after construction. The two methods resemble the two abstract events
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with guards ensuring that the invariant holds. The require-expressions have an
error message to be included in the exception when the condition is violated.
Here, also the invariant is encoded via two require-clauses. These clauses are
checked upon construction of the object. Note that ChatGPT did a good job in
commenting the program.

Next, we want to generate test-cases with ScalaCheck. Therefore, we let Chat-
GPT generate ScalaCheck properties that can be tested automatically. Obvious
properties to be tested are the invariants.

Prompt: Given the class Bridge0, give me a ScalaCheck property that
checks if the constructor and methods respect the following invariants:
(1) n shall be positive, (2) n shall not exceed d, (3) d shall be greater
than 0.

Two Iterations were needed, because ChatGPT generated a property that had
several flaws. The code did not compile. Furthermore, the tests failed when a
precondition was violated, but such tests should be ignored. In addition, one
property did not catch exceptions and another property was useless, in fact,
testing nothing. Hence, in the following prompt we communicated these obser-
vations in order to correct the flawed property.

Prompt: The last property can be skipped. It also does not compile.
There seems to be a misunderstanding: we wanted a property that checks
that the maximum allowed number of cars on the island is greater than
zero. Furthermore, I think that the property “constructor” shall also
test if an exception in case of invalid arguments is raised. Similar to the
other two properties.

The result was the following ScalaCheck property.

1 object Bridge0Properties2b extends Properties("Bridge0") {
2 // Generator for valid d values (greater than 0)
3 val genD: Gen[Int] = Gen.posNum[Int]
4 ...
5 property("ml_out respects invariants") = forAll(genD) { d: Int =>
6 val bridge = new Bridge0(d, d) // initialize with maximum cars
7 val result = try {
8 bridge.ml_out ()
9 bridge.carsOnIsland <= d

10 } catch {
11 case e: IllegalArgumentException => bridge.carsOnIsland == d
12 }
13 result :| s"ml_out with d = $d and n = ${bridge.carsOnIsland}"
14 }
15 ... GC.V1.property-basted-test

The above listing shows the correct ScalaCheck property for method ml_out().
The code for ml_in is similar. First in Line 3, a generator for natural numbers is
defined. It is used in the following property (Line 5) to generate values of the
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maximum number of cars d, i.e. the property should hold for all natural numbers
d. Next, in Line 6 a bridge with the maximum number of allowed cars is created.
Then, the method is called at Line 8. This call shall raise an exception leaving
the number of cars on the island unchanged. Note that this property constitutes
a boundary test at the upper limit, initializing the initial number of cars n to
the maximum d. When running ScalaCheck it produces 100 random tests and
all pass. The same holds for the property of method ml_in.

5.2 Refinement

In the following, we will refine the initial Scala model by introducing the one-way
bridge going to the island.

Prompt:

– Given the class Bridge0, give me a refined class Bridge1 with three
variables:
• a: the number of cars on the bridge to the island,
• b: the number of cars on the island,
• c: the number of cars on the bridge from the island to the main-
land.

• The refinement relation is n = a + b + c.
– We need now two additional methods: il in for cars going from the

bridge to the island and il out for cars leaving the island and going
on the bridge.

– There is a new invariant: the bridge shall be a one-way bridge.

Again, the first attempt was not successful. The preconditions of ml_out and ml_in

violated the one-way rule of the bridge, because ChatGPT mixed up variable
names. In addition, the first version did not allow the free initialization of a, b,
and c. Formulating these observations in a new prompt created a refined version
of the bridge controller.

1 class Bridge1(d: Int , initialA: Int = 0, initialB: Int = 0, initialC: Int =
0) {

2 require(d > 0, "d must be greater than 0")
3 require(initialA + initialB + initialC <= d, "Initial number of cars

exceeds
4 limit")
5

6 private var a: Int = initialA // cars on the bridge to the island
7 private var b: Int = initialB // cars on the island
8 private var c: Int = initialC // cars on the bridge from the island to the
9 // mainland

10

11 // One -way bridge invariants
12 private def oneWayInvariant (): Boolean = {
13 !(a > 0 && c > 0)
14 }
15 ...
16 // method to model the entering of a car from the mainland to the bridge
17 // towards the island
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18 def ml_out (): Unit = {
19 require(c == 0, "Bridge is already in use by cars from the island to

mainland")
20 require(b + c + a < d, "Number of cars exceeds limit!")
21 a += 1
22 }
23 ...
24 require(oneWayInvariant ())
25 } GC.V2.bridge

The above code snippet shows the part of the refined model with the new vari-
ables, its invariants and the refined version of ml_out(). This class can initialize
a, b, c individually, it correctly checks that their sum does not exceed the max-
imum d, and a new one-way invariant has been introduced and is checked. The
preconditions are correct including nicely generated error messages.

The above code seems to be correct. In the following, we attempted to gen-
erate a property to test that refinement holds. The following prompt guided
ChatGPT.

Prompt: Given the two classes Bridge0 and Bridge1. Generate a
ScalaCheck property that checks if ml out of Bridge1 is a refinement
of the same method in Bridge0 using the following refinement relation:
n = a + b + c. The generated classes shall respect their invariants, hence
all invalid classes shall be filtered out.

In addition, we included the code of Bridge0 and Bridge1 into the above prompt.
This time, the results of ChatGPT were less convincing as the generated code
included many logical flaws. In total, we needed ten iterations: four iterations in
order to get a correct refinement property for method ml_out and six iterations for
the two new methods for entering and leaving the island from the bridge. The
refined version of method ml_in having the simplest precondition was immediately
correct. The two main issues were (1) sophisticated but slightly wrong class
generators that raised exceptions due to invariant violations and (2) precondition
violations of methods were wrongly classified as test failures. The latter is an
error that also appeared in the first test property for testing the initial model.
Finally, after ten attempts, ChatGPT produced a test property for testing that
the refinement property holds.

1 ...
2 def genValidBridgeStates(d: Int): Gen[(Bridge0 , Bridge1)] = {
3 for {
4 a <- Gen.choose(0, d)
5 b <- Gen.choose(0, Math.max(0, d - a))
6 c <- Gen.choose(0, Math.max(0, d - a - b))
7 if (a > 0 && c == 0) || (c > 0 && a == 0) || (a == 0 && c == 0)
8 bridge0 = new Bridge0(d, a + b + c)
9 bridge1 = new Bridge1(d, a, b, c)

10 } yield (bridge0 , bridge1)
11 }
12 ...
13 property("Bridge refinement for ml_out , ml_in , il_in , and il_out") =
14 forAll(genD) { d: Int =>
15 val validBridgeStates = genValidBridgeStates(d)
16 Prop.forAllNoShrink(validBridgeStates) { case (bridge0 , bridge1) =>



13

17

18 // Properties for ml_out
19 val mlOutResult = if (bridge0.carsOnIsland < d && bridge1.carsFromIsland ==

0) {
20 bridge0.ml_out ()
21 bridge1.ml_out ()
22 bridge0.carsOnIsland == bridge1.carsToIsland + bridge1.carsOnIsland +
23 bridge1.carsFromIsland
24 } else true
25 ...
26 mlOutResult && mlInResult && ilInResult && ilOutResult
27 GC.refinement.property

The generated property tests that ml out and ml in are correctly refined and
that the new methods il in, il out do not change the abstract state, i.e. they
refine skip (stuttering). Interestingly, ChatGPT came up with a property that
combines the test results for all four methods (Line 26). The property initializes
the classes such that a+ b+ c stay below maximum d. It also filters states that
violate the one-way invariant. Note that both initialized bridge objects respect
the refinement mapping n = a+ b+ c.

6 Object-Oriented Development

In this approach we gave ChatGPT more freedom by not asking for a solu-
tion based on guarded commands. Perhaps not surprising, it pursued an object-
oriented solution, which we shall describe in this section. There were in fact two
attempts, the first of which was abandoned after several prompts. We illustrate
both attempts below, the first one only briefly and the second one in more detail.
First, we provided ChatGPT with the following prompt.

Prompt: Write a Scala program, which models cars moving between
two zones: a mainland and an island connected by a bridge. There are
some requirements defined. These are as follows: [FUN1 ... FUN3, ENV1
... ENV5 provided]. However, we want to develop this program using
stepwise refinement where we start with an abstract program that ig-
nores certain details, and then we want to refine the program in steps,
adding more and more details. In the first step we ignore the bridge and
just consider there to be a mainland and an island. There can only be
maximally d cars on the island at any point in time. Initially there are
0 cars on the island. We need an operation for moving a car from the
mainland to the island and for moving a car from the island back to the
main land. Can you write the Scala 3 program for the first step?

6.1 A First Attempt

A first generated solution was cleverly suggesting a class representing the notion
of a place, which could then either be the island, the mainland, or the bridge:
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1 class Place(var name: String , var carLimit: Int , var currentCars: Int) {
2 def addCar (): Boolean = {...}
3 def removeCar (): Boolean = {...}
4 }

Although the idea was appealing, the solutions were flawed, needing numerous
prompts. Moving a car from a place to another place was placed in the main
program and not as part of the Place class. If the source place had cars but the
target place had no more space, a car will be moved from the source anyway,
but not transferred to the target. It generally had problems with the bridge, how
many cars to allow and in what directions they could drive, going from allowing
only one car on the bridge to allowing cars in both directions, each of which is
wrong. Also it moved the wrong number of cars. There were also compiler errors.
It was decided to abandon this thread and start over. The following sections cover
the second attempt.

6.2 Initial Model

We started over again with the exact same prompt. This led interestingly to a
different solution introducing an Island class and a Mainland class, instead of the
generic Place class. It, however, took two additional prompts to solve some issues,
including some style issues concerning the design of classes (there was initially
only an Island class and no Mainland class), and our wish that moving a car
should just be one operation, not require two method calls. An error was also
detected, that a car is moved to the island even when there are no cars on the
mainland. This led to the following self explanatory solution, which we name
OO.V1 (Object-Oriented Version 1).

1 class Island(maxCars: Int) {
2 private var currentCars: Int = 0
3

4 def canAcceptCar: Boolean = currentCars < maxCars
5

6 def addCarFromMainland (): Boolean = {
7 if (canAcceptCar) {
8 currentCars += 1
9 true

10 } else {
11 false
12 }
13 }
14

15 def moveToMainland (): Boolean = {
16 if (currentCars > 0) {
17 currentCars -= 1
18 true
19 } else {
20 false
21 }
22 }
23

24 def carsOnIsland: Int = currentCars
25 } OO.V1.island
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1 class Mainland {
2 private var cars: Int = 0
3

4 def addCar (): Unit = {
5 cars += 1
6 }
7

8 def moveToIsland(island: Island): Boolean = {
9 if (cars > 0 && island.canAcceptCar) {

10 cars -= 1
11 island.addCarFromMainland ()
12 true
13 } else {
14 false
15 }
16 }
17

18 def carsOnMainland: Int = cars
19 } OO.V1.mainland

We also asked ChatGPT to rename Island.addCarFromMainland() as Island.addCar() since
it really just adds a car to the island. We then proceeded to ask ChatGPT to
generate a property-based test with the following prompt.

Prompt: Can you write tests in ScalaCheck, using property-based test-
ing, which test these classes?

This first resulted in a solution containing the following code.

1 property("moveToMainland transfers car from island to mainland") =
2 forAll { (initialMainlandCars: Int , initialIslandCars: Int) =>
3 ...
4 if (beforeIsland > 0) {
5 (afterMainland == beforeMainland) && (afterIsland == beforeIsland - 1)
6 } else {
7 ...
8 }
9 }

As can be seen, this is not quite correct in that it only checks that a car is
removed from the island, and not that it is added to the mainland. In fact, this
corresponds to ChatGPT’s generated explanation of the solution.

Response: ... If you move a car from the mainland to the island, the
number of cars on the mainland should decrease by one, and the number
on the island should increase by one, unless the island is full or the
mainland has no cars. If you move a car from the island to the
mainland, the number of cars on the island should decrease by
one, unless the island has no cars.

The generated English language requirement is wrong with respect to moving
a car from the island to the mainland by not requiring the car to be added to
the mainland, and the code generation “correctly” follows that. A second issue
was that it generated negative numbers and very large positive numbers as test
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inputs, which caused the test to run for a long time. Finally for the amusement,
we prompted it with “Is the ’foreach’ construct the preferred Scala3 way to write
a for loop?” (finding it slightly unappealing), to which it responded: “foreach is
a method on collections and is still idiomatic for iterating over collections and
performing side-effects”, sticking to its guns. The final result after four prompts
was as follows, including here only the test of moving a car from the island to
the mainland.

1 object CarSystemSpec extends Properties("CarSystem") {
2 val maxCarsOnIsland = 5
3 val limitedGen = choose(0, 10)
4 ...
5 property("moveToMainland transfers car from island to mainland") =
6 forAll(limitedGen , limitedGen) {
7 (initialMainlandCars: Int , initialIslandCars: Int) =>
8 val mainland = new Mainland ()
9 val island = new Island(maxCarsOnIsland)

10 (0 until initialMainlandCars).foreach(_ => mainland.addCar ())
11 (0 until initialIslandCars).foreach(_ => island.addCarFromMainland ())
12

13 val beforeMainland = mainland.carsOnMainland
14 val beforeIsland = island.carsOnIsland
15 island.moveToMainland ()
16 val afterMainland = mainland.carsOnMainland
17 val afterIsland = island.carsOnIsland
18

19 if (beforeIsland > 0) {
20 (afterMainland == beforeMainland + 1) && (afterIsland == beforeIsland -

1)
21 } else {
22 (afterMainland == beforeMainland) && (afterIsland == beforeIsland)
23 }
24 }
25 } OO.V1.property-basted-test

As can be seen it has switched to use a “user defined” generator (Line 3) as
a response to the prompt on negative and too large positive numbers. It first
initializes the island and the mainland (lines 8-11). It then stores the pre-values
of cars on the mainland and island (lines 13-14). Then it moves a car (Line 15).
Then it obtains the post-values of cars on the mainland and island (lines 16-17).
The condition itself checks that a car is moved in case there were cars on the
island, or else nothing is changed (lines 19-23).

When running the test, however, it failed with a message from ScalaCheck,
which we directly fed back to ChatGPT as a prompt without any further expla-
nations.

Prompt:

! CarSystem.moveToMainland transfers car from island to mainland:
Falsified after 0 passed tests.

> ARG_0: 0
> ARG_1: 1
> ARG_0_ORIGINAL: 10
> ARG_1_ORIGINAL: 8
Found 1 failing properties.
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The error is caused by the fact that island.moveToMainland() does not actually add
a car to the mainland. What is interesting is that ChatGPT itself corrects the
error based on ScalaCheck’s error message as a prompt, suggesting that one can
imagine an automated feedback loop between a testing tool and an LLM. The
corrected part of the code is shown below where a reference to the mainland has
been added as parameter to the moveToMainland method (Line 3), and a mainland.

addCar() statement has been added (Line 6).

1 class Island(maxCars: Int) {
2 ...
3 def moveToMainland(mainland: Mainland): Boolean = {
4 if (currentCars > 0) {
5 currentCars -= 1
6 mainland.addCar ()
7 true
8 } else {
9 false

10 }
11 }
12 ...
13 } OO.V1.island-corrected

6.3 Refinement

At this point we move forward and ask ChatGPT to perform a refinement with
the following prompt.

Prompt: Now let’s do the first refinement. We introduce a bridge be-
tween the mainland and the island. The bridge is a one way bridge in
the sense that cars can only go in one direction at a time. We now need
four operations: (1) for moving a car from the mainland to the bridge,
(2) for moving a car from the bridge to the island, (3) for moving a car
from the island to the bridge, and (4) for moving a car from the bridge
back to the mainland. We do not yet introduce traffic lights.

There were several obstacles on the way to a working solution. There were some
style issues, including again two method calls to make a move, inconsistent ways
of checking whether a move is possible (in a condition: asking for forgiveness
after a failed attempt versus asking for permission), naming of methods, and
code that could be simplified. There was a syntax error in a private name not
being accessible. There were also semantic errors, including that a car did not
get added to mainland. There was wrongly also no limit to how many cars can be
on the bridge. The Fun2 requirement stated: The number of cars on bridge and
island is limited. This requirement was admittedly not quite precise. To make it
precise, we required that in order to move a car from the mainland to the island,
the sum of cars on the island and on the bridge going in the direction of the
island should be less than the maximal allowed number of cars on the island.
Further errors included that cars could go in both directions at the same time,
or that it only allowed one car on the bridge at a time, and that the maximal
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number of cars on bridge was defined as constant rather than a function of cars
on island.

Below is the final result after seven prompts, showing the implementation of
the bridge, the island, and the mainland. First the Bridge class together with an
enumerated type of directions.

1 enum Direction:
2 case ToIsland , ToMainland
3

4 class Bridge(island: Island , mainland: Mainland) {
5 private var _carsOnBridge: Int = 0
6 private var direction: Direction = Direction.ToIsland
7

8 def canAcceptCar(d: Direction): Boolean = {
9 if (d == Direction.ToIsland) {

10 return _carsOnBridge + island.carsOnIsland < island.maxCars &&
11 (_carsOnBridge == 0 || direction == d)
12 }
13 _carsOnBridge == 0 || direction == d
14 }
15

16 def moveCarOntoBridge(d: Direction): Unit = {
17 _carsOnBridge += 1; direction = d
18 }
19

20 def moveToIsland(dest: Island): Boolean = {
21 if (_carsOnBridge > 0 && direction == Direction.ToIsland && dest.

canAcceptCar)
22 {
23 _carsOnBridge -= 1; dest.acceptCar (); true
24 } else { false }
25 }
26

27 def moveToMainland (): Boolean = {...}
28 } OO.V2.bridge

The Bridge class above is relatively straightforward, except perhaps for the condi-
tion determining whether a car can be moved onto the bridge in some direction
d, defined by the method canAcceptCar (lines 8-14). If the direction is towards the
island, the number of cars on the island plus the current number of cars on the
bridge should be less than the allowed maximum number of cars on the island.
In any case, either there should be no cars on the bridge or the direction d must
match the current direction of the other cars. The classes Island and Mainland below
are relatively straightforward.

1 class Island(val maxCars: Int) {
2 private var currentCars: Int = 0
3

4 def canAcceptCar: Boolean = currentCars < maxCars
5

6 def carsOnIsland: Int = currentCars
7

8 def moveToBridge(bridge: Bridge): Boolean = {
9 if (currentCars > 0 && bridge.canAcceptCar(Direction.ToMainland)) {

10 bridge.moveCarOntoBridge(Direction.ToMainland)
11 currentCars -= 1
12 true
13 } else {
14 false
15 }
16 }
17
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18 def acceptCar (): Unit = {
19 currentCars += 1
20 }
21 } OO.V2.island

1 class Mainland {
2 private var cars: Int = 0
3

4 def addCar (): Unit = cars += 1
5

6 def carsOnMainland: Int = cars
7

8 def moveToBridge(bridge: Bridge): Boolean = {
9 if (cars > 0 && bridge.canAcceptCar(Direction.ToIsland)) {

10 bridge.moveCarOntoBridge(Direction.ToIsland)
11 cars -= 1
12 true
13 } else {
14 false
15 }
16 }
17 } OO.V2.mainland

It was interesting to observe that the object-oriented design distributes the logic
in a manner that makes it more difficult to ensure oneself that the code is correct
compared to the guarded command approach. E.g. to understand how a car is
moved from the island to the bridge one has to study several methods distributed
over the two classes. In the guarded command solution the entire action is defined
in one place.

We have now developed two versions of our bridge control system, an abstract
initial version OO.V1 and a refinement OO.V2. We first performed a property-
based test of OO.V2, which we will not report upon in detail here due to lack
of space. It did not reveal any errors in V2. However, it is worth mentioning
that it took 10 prompts to get the property-based test itself right. The main
issue was that it repeatedly did not initialize all of mainland, bridge, and island
correctly with an initial random (in ScalaCheck style) number of cars, it only
initialized the place moved from. What is more interesting is that we fed the
failed test outputs as prompts (as shown earlier) repeatedly without additional
explanations. However, this process did not seem to converge, and ChatGPT
needed an additional small hint at the end before success. After this property-
based testing exercise we then proceeded to the actual refinement test with the
following prompt.

Prompt: The task is now to show that the second version V2 indeed
is a refinement of the first version V1. This is done by first defining a
mapping M from the state of V2 to the state of V1, and then show that
given a reachable state S2 of V2, if we apply an action A2 of V2 and
reach a state S2’, then if we apply the corresponding action A1 in V1 to
M(S2) we get a state S1’ such that S1’ = M(S2’). Can you write a test
using ScalaCheck that performs this test? I will give give you the two
versions V1 and V2 of the code [... the code of V1 and V2 ...].
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Generating a refinement test was non-trivial and required 56 prompts, involving
the following issues, amongst others. The initial test moved several cars from
mainland to island over the bridge before testing the intermediate states. It
should check one move at a time. It also initially tested only one direction.
Also, at some point the condition verified was wrong, verifying that all cars on
the bridge got moved to the island in one move. In another attempt, the test
for moving a car from the bridge in V2 to the island compared this to moving
a car from the island in V1 to the mainland (wrong direction). It also made
wrong subtractions and additions. Some iterations were spent ensuring that the
concrete version only made moves from the bridge to the mainland or island
if the direction was correct. At some point it wanted to compare island (and
mainland) objects with equality (==). This was an interesting suggestion, but
it had not defined equality (the equals method), and this would also cause a
refactoring of the code, which we at this point tried to avoid.

At some point it produced the following code for moving a car from the
mainland to the bridge in the concrete version V2.

1 val movedToBridge = mainlandV2.moveToBridge(bridge)
2

3 val (mainlandV1 , islandV1) = mapStateV2toV1(mainlandV2 , islandV2 , bridge)
4

5 movedToBridge == mainlandV1.moveToIsland(islandV1)

First, a move is performed at the concrete V2 level (Line 1), storing the Boolean
result (success or failure) in the variable movedToBridge. The resulting concrete V2
state is then mapped to the corresponding abstract state (Line 3). Finally, a
move is performed at the abstract V1 level, starting from that abstracted state,
and the result is asserted equal to the result of the concrete move, stored in the
variable movedToBridge (Line 5).

There are a few errors here. First of all, it maps the post-state of the V2
move to V1, whereas it should have been the pre-state such that V1 can make a
move from that. Second, it compares the move from mainland to the bridge in
V2 to a move from the mainland to the island in V1, and these yield different
results. Note that in V2, a car on the bridge going in the direction of the island
is considered as still belonging to the mainland in V1, so in V1 no car should
be moved to the island. In general, it had a hard time learning that cars on the
bridge moving to the island in V2 belong to the mainland in V1, and similarly
the other way, cars on the bridge moving to the mainland in V2 belong to the
island in V1.

This is related to the problem of stuttering in V1. This is the situation where
an action in the concrete version V2 does not correspond to an action in V1. This
is normally in refinement proofs handled by allowing the abstract version, here
V1, to stutter, to make a move that does not change its state. Stuttering was
initially not modeled in the generated test code, which, however, interestingly
was caught by the refinement test. Specifically, in the property above a move
from mainland to the bridge in V2 is attempted compared to a move between
mainland and island in V1, whereas it should have been a stuttering step in V1.
We informed ChatGPT about stuttering with the following prompt.
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Prompt: The [problem] is “stuttering”: stuttering is the situation where
an action in the concrete version (V2 here) does NOT have a correspond-
ing action in the abstract version. In this case, the starting state and the
result state of the concrete action map to the same abstract state. We
say that the action in the concrete version corresponds to a stuttering
action in the abstract version (that does not change the state). So in
the first property, mainlandV2.moveToBridge causes a car to be moved
from the mainland to the bridge but since cars on the bridge going to the
island are counted as belonging to the mainland in the abstract version,
this corresponds to no action in the abstract state.

A different problem was related to the generator of V2 states, caught by a
failing test. The error was caused by the refinement mapping from V2 to V1,
which only adds to the island if there is space. The mapping calls islandV1.addCar(),
which contains the check: if (canAcceptCar).... This means that not all cars that
are on the island and on the bridge in Mainland direction in V2 are necessarily
added to the abstract island by the mapping if there are “too many” cars. The
concrete state should be initialized such that the sum of cars on the island and
on the bridge going towards the mainland is less than or equal the maximum
number of cars allowed on the island. In the end we manually had to fix the
generator of V2 states.

At several stages it wanted to change the V2 implementation to have the
direction be part of the implementation. However, considering how fragile Chat-
GPT is it was decided not to follow that advice, trying to avoid redoing too
much work. It was also necessary to remind it of what versions V1 and V2 were.
It also changed the properties to test even when they were ok, and it had to be
asked to go back to previous definitions, reminding it what they were. These are
issues that likely would be avoided with a system such as Copilot.

The following refinement test using ScalaCheck was finally generated. First
it generated the following generator of inputs.

1 object RefinementProperties extends Properties("Refinement") {
2 val genCars = for {
3 m <- Gen.choose(0, 10)
4 maxIslandCars <- Gen.choose(0, 10)
5 i <- Gen.choose(0, maxIslandCars)
6 d <- Gen.oneOf(Direction.ToMainland , Direction.ToIsland)
7 b <- Gen.choose(0, maxIslandCars - i)
8 } yield (m, b, i, maxIslandCars , d)
9 ...

10 } OO.refinement.generator

What is of interest here is the number of cars generated for the bridge (Line
7), taking into account that the number of cars on the island and bridge should
reflect (not surpass) the maximum number of cars allowed on the island. This
required numerous prompts.

Next, the refinement mapping is defined by the mapStateV2toV1 method shown
below.
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1 def mapStateV2toV1(mainlandV2: MainlandV2 , islandV2: IslandV2 ,
2 bridge: Bridge): (MainlandV1 , IslandV1) =
3 {
4 val mainlandV1 = new MainlandV1 ()
5 val islandV1 = new IslandV1(islandV2.maxCars)
6

7 (1 to mainlandV2.carsOnMainland +
8 (if (bridge.getDirection == Direction.ToIsland) bridge.carsOnBridge else

0))
9 .foreach(_ => mainlandV1.addCar ())

10

11 (1 to islandV2.carsOnIsland +
12 (if (bridge.getDirection == Direction.ToMainland) bridge.carsOnBridge

else 0))
13 .foreach(_ => islandV1.addCar ())
14

15 (mainlandV1 , islandV1)
16 } OO.refinement.mapping

It takes as argument a mainland, an island, and a bridge of version OO.V2 and
returns a tuple consisting of the corresponding mainland and island of version
OO.V1. It first creates new instances of OO.V1 mainland and island (lines 4-5).
It then adds cars to the mainland (lines 7-9). That is, for each car in the OO.V2
mainland plus the cars on the bridge going in direction of the island, it adds a
car to the OO.V1 mainland. Similarly, it adds cars to the OO.V1 island that are
on the bridge going in the direction of the mainland (lines 11-13), in addition
to the cars on the OO.V2 island. At the end, it returns the updated OO.V1
mainland and island (Line 15).

Finally, the refinement property, corresponding to Definition 5.3, for moving
a car from the bridge to the island is shown below.

1 property("Bridge to Island move is consistent") = forAll(genCars) {
2 case (m, b, i, maxIslandCars , d) =>
3 val mainlandV2 = new MainlandV2 ()
4 val islandV2 = new IslandV2(maxIslandCars)
5 val bridge = new Bridge(islandV2 , mainlandV2)
6 (1 to m).foreach(_ => mainlandV2.addCar ())
7 (1 to b).foreach(_ => bridge.moveCarOntoBridge(d))
8 (1 to i).foreach(_ => islandV2.acceptCar ())
9

10 val (mainlandV1 , islandV1) =
11 mapStateV2toV1(mainlandV2 , islandV2 , bridge)
12

13 val movedToIslandV2 = bridge.moveToIsland(islandV2)
14 val movedToIslandV1 =
15 if (movedToIslandV2) mainlandV1.moveToIsland(islandV1) else false
16

17 val (mainlandV1Post , islandV1Post) =
18 mapStateV2toV1(mainlandV2 , islandV2 , bridge)
19

20 (movedToIslandV2 == movedToIslandV1) &&
21 mainlandV1Post.carsOnMainland == mainlandV1.carsOnMainland &&
22 islandV1Post.carsOnIsland == islandV1.carsOnIsland
23 } OO.refinement.property

It first initializes a OO.V2 state consisting of a mainland, an island, and a bridge
(lines 3-8). It then maps this concrete OO.V2 state to an OO.V1 state using the
refinment mapping (Line 10). It then performs the moves, a concrete on OO.V2
and an abstract on OO.V1 if there was a concrete move (lines 13-15). Then it
maps the resulting OO.V2 state to a OO.V1 state using the refinement mapping
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(Line 17). At the end, it checks the commuting diagram condition, that the
OO.V1 state obtained by the abstract move is the same as the state obtained
by mapping the resulting OO.V2 state to a OO.V1 state using the refinement
mapping (lines 20-22).

7 Conclusion

The developments using an LLM like ChatGPT turned out not to be effortless.
This is likely due to the fact that the problem being solved is not a common
pattern occurring in open source software. We let ChatGPT generate all the
code (except for a couple of exceptions), including test properties, since we tried
to see how far this approach could be taken. In some cases ChatGPT went off in
a wrong direction and had to be steered back on the right track. The experience
was different than the “how do you do X in programming language Y” prompts
that ChatGPT is so good at.

It turned out that the object-oriented approach required almost 5 times as
many prompts (80) than the guarded command approach (17). There can be
several reasons for that but we did observe that it was easier to convince oneself
that a guarded command program was correct than an object-oriented program.
We attribute this to the fact that in an object-oriented solution, a move (e.g. from
bridge to mainland) was distributed over several methods in different classes.
This aspect could potentially impact the performance of ChatGPT as well.

One learns to write better requirements through an effort like this, what
is also referred to as prompt engineering. One can imagine requirements be-
ing translated to a formalism, as in our case, which can then be checked for
soundness and completeness. Once the generated artifact is “good enough”, the
requirements are possibly also “good enough”.

However, what required the most effort was to read and comprehend the
generated code, since many prompts lead to many results that have to be inves-
tigated, which was quite tiresome. ChatGPT does not point out (in the code)
what has been changed, so we had to read all the generated code after each
prompt. A system integrated in an IDE, such as Copilot, should do a better
job here. As it turned out, it was easier to read and understand the generated
tests, and in particular the property-based tests. This suggests that tests, and in
particular succinct and readable specifications, become important in evaluating
generated code.

Our process consisted, for each result, of writing down observations, and then
re-formulating them as a prompt. In case of failed test cases we first tried to feed
them back directly as prompts without modification. As we showed, this worked
in some cases in the sense that ChatGPT “understood” what the problem was
and fixed it. In other cases this approach did not converge. Since the process
involved prompt engineering in natural language (English), the results shall be
interpreted with a grain of salt. Prompt engineering is an informal process.
Nonetheless, we believe that we can conclude that testing and specification are
important concepts in this context.
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Wrt. future work, a challenge for research in this area is the unknown nature
of future improvement of LLMs’ capabilities. If these models become significantly
better, research done now may quickly become obsolete (depending on the kind
of research of course). It will be interesting to carry out the same experiment with
Version 5 of ChatGPT, which is expected to be launched within months of the
time of writing, as well as with other LLM models. It would also be interesting to
carry out the same experiment using an LLM IDE such as Copilot. One feature
that we were missing during the work was access to a tree-like structure of the
development branches (perhaps supported by a github), where one easily can
“walk” up and down the tree of experiments.
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