
Safer Than Perception: Increasing Resilience of
Automated Vehicles Against Misperception

Martin Fränzle[0000−0002−9138−8340]⋆1 and Andreas Hein[0000−0001−8846−2282]2

1 Research Group Foundations and Applications of Systems of Cyber-Physical Systems
Carl von Ossietzky Universität Oldenburg, Germany

martin.fraenzle@uol.de
2 Research Group Assistance Systems and Medical Technology

Carl von Ossietzky Universität Oldenburg, Germany
andreas.hein@uol.de

Abstract. Autonomous vehicles (AV) rely on environmental percep-
tion to take manoeuvre decisions. Safety assurance for AV thus hinges
on achieving confidence in all percepts that are safe-guarding critical
manoeuvres. As the safety targets for such critical manoeuvres are con-
siderably higher than the statistical figures for the reliability of at least
current learning-enabled classification algorithms within the environmen-
tal perception, we need means for assuring that the overall system is
”‘safer than perception”’ in that the frequency of erratically adopting
a critical manoeuvre is considerably lower than the frequency of indi-
vidual misclassifications. We present a methodology for constructively
generating reformulations of guard conditions that are more resilient to
misperception than the original condition. The synthesized, rephrased
guard conditions reconcile a given safety target, i.e. a given a societally
accepted upper bound on erratically activating a critical manoeuvre due
to a false positive in guard evaluation, with maximal availability, i.e.
maximal true positive rate. By synthesizing a resilient rephrasing of the
guard condition, the constructive setting presented herein complements
the analytical setting from a previous companion paper [6], which merely
analysed a given condition for its safety under uncertain perception.

Keywords: Safety-critical perception, Decision making, Robustification

1 Introduction

Decision-making based on — inherently uncertain to some extent— environ-
mental perception is a key element of providing cyber-physical systems, like
transportation systems in general and road vehicles in particular, with forms of
autonomy, as in highly automated or autonomous driving. Such decision-making
obviously is safety-critical, as the actions adopted in consequence of a decision
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have physical impact and can consequently incur risk to life, health, and property.
Especially in the field of automated vehicles, societal expectations concerning
the risk induced by automated driving functions, and thus ultimately for error
rates decision-making, are very high: while manual driving already is amazingly
safe at considerably more than a million kilometres driven on average between
two accidents incurring some form of injury, the public debate as well as relevant
authorities tend to require highly automated vehicles (HAV) to even further
reduce the overall rate of injuries and fatalities compared to human-operated
vehicles.

How rare accidents of HAV must be is a matter of ongoing societal debate,
but the societal acceptance threshold will obviously be orders of magnitude below
the misperception rates that can be realized by or guaranteed of 3 any perception
system containing machine-learned components, which can only be trained and
qualified on examples. Concerning the three types of uncertainties that these
systems inevitably are prone to, namely

1. existential uncertainty, i.e. not knowing whether all or at least all relevant
environmental objects have been detected,

2. classification uncertainty, i.e. uncertainty in exactly classifying the type, like
“car“’, “adult pedestrian“’, “playing child“’, or “waste bin“’, of any detected
object, and

3. state uncertainty, i.e. inaccuracies in determining relevant physical quanta,
like speed or distance, of a classified object,

uncertainties especially concerning the first two remain relatively high. Even if
those machine-perception systems could (and currently they cannot) guarantee
significantly better performance w.r.t. these two criteria than human vision within
complex street scenes and at any level of environmental disturbance, like rain, fog,
or blinding sun, their error rates would still remain orders of magnitude higher
than the inherently strict safety target expected of automated vehicles. This
implies that a significant gap remains to be bridged here, namely the gap between
actual performance of technical perception and expected societal acceptance
thresholds for unjustified manoeuvres.

This paper sets out to narrow this gap by answering the following three
questions affirmatively:

1. Can we provide a mathematical or logical formalization of relevance of a
percept such that we understand when a misperception remains redundant to
a decision, i.e. either does not propagate into a — then unjustified — decision
or does not harm the safety of the decision?

2. Can we demonstrate the positive safety impact of such redundancies in that
we rigorously show that actual guard conditions are “safer than perception“’
in that their evaluation exposes considerably lower error rates than the
perception, which is their input?

3 Note that for extremely low error rates, realizing them technically and providing
evidence for their satisfaction are completely different, both very hard, issues.
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3. Can we provide a mechanism automatically rewriting a safety-critical guard
condition into a more robust variant that retains the logical content of the
original condition, yet offers resilient evaluation under uncertainties in that
it provides false positive rate below the societal acceptance threshold while
maximizing true positive rates?

In answering the first question, we will follow the lines of the precursor paper
[6], which also addressed the second question by means of safe, i.e. pessimistic
approximation of the quantitative risk. We will herein complement its analysis
by a precise closed-form analysis of a special case, which sheds more light on
the actual safety level to be expected and confirms that safety gains overarching
orders of magnitude are indeed plausible. The last question remained an open
issue for future research in [6] and we are pleased of now being able to expose an
algorithm that can constructively construct optimized guard formulations.

This paper is organised as follows: Section 2 sketches a reference architecture
used throughout the subsequent discussions while 3 provides a simple example
showcasing the effect of why and how the evaluation of a complex guard condition
safeguarding a safety-critical manoeuvre can be “safer than perception”. The
subsequent Sections 4 and 5 develop the mathematical framework facilitating
quantitative analysis of this effect and prove its existence. Section 6 then sketches
an automatic rewriting technique maximizing the resilience of a critical guard
condition while keeping detection performance at a requested level. Sections 7
and 8, finally, refer to related work and provide a summary and pointers to future
work.

2 Preliminaries

For solidly basing our analysis, we postulate a certain reference architecture.
As discussed in [6], which this section is based on, the exemplary reference
architecture uses labelled occupancy grids for collecting the output of machine-
learning based algorithms that classify objects in the environment of the ego-
vehicle. Class labels are assigned according to a (generally partially ordered, e.g.,
collecting cars, trucks, motor-cycles, etc. into a super-class of vehicles) ontology.
The occupancy grid partitions the geometric vicinity of the ego car into finitely
many grid elements. Its grid elements are filled with the corresponding class
labels from the ontology whenever they have been perceived as being occupied
by an object. Postulating this particular reference architecture is a matter of
convenience, as it provides the subsequent analysis with a defined basis, but
does by no means imply that the analysis would fail for other architectures, like
those representing the world model by an object list — in fact, it carries over, as
the models are mostly isomorphic (we discuss this in some more depth in the
conclusion). Our analysis ought consequently, cum grano salis, carry over to the
highly proprietary implementations of original equipment manufacturers and
their suppliers.

Typical conditions enabling or blocking — and thereby meant to safeguard —
critical manoeuvres then take the form of Boolean combinations of statements



4 M. Fränzle and A. Hein

concerning the occupancy of certain elements of the occupancy grid, with these
elements together forming grid areas which correspond to subspaces of the
surrounding traffic space. The atoms of such statements query occupancy of a
particular grid element by certain object types named in the ontology, plus maybe
additional unlocalized environmental conditions, like general visibility conditions.
As an example take an evasive manoeuvre of a car across the curb to the footpath
in order to make room for an emergency vehicle: Initiation of such a manoeuvre
by the ego car would naturally be safeguarded by a Boolean condition requiring
(1) presence of an emergency vehicle somewhere in the occupancy grid elements
belonging to the traffic space reasonably close behind the ego car, (2) absence
of vulnerable road users within some sufficiently large and connected group of
occupancy grid elements belonging to the bike lane and footpath just ahead of
the ego vehicle, (3) absence of any obstacles, including parked or stopped cars, on
the line between the current ego position and the space for evasion identified via
the previous condition, and finally (4) general (like absence of dense fog, presence
of illumination) and geometric (like absence of occlusions) visibility conditions
pertaining to the critical objects mentioned throughout the previous conditions.

While all the sub-conditions of the above guard condition intuitively make
sense as being necessary conditions for safe execution of the safety-critical evasive
manoeuvre, a safety risk due to misperception of some of the atomic statements
occurring in the guard condition prevails, as no technical (nor a biological)
perception system is perfect. In complex road scenes, we can neither expect
to detect all potentially relevant objects nor are safe from misclassification of
harmful objects as harmless and irrelevant. With absolute object detection rates
often dropping below 2

3 and classification accuracy easily falling below 90% in
non-ideal visibility conditions [8], would our reliance into the evaluation of the
guard condition drop into similar ranges due to the weakest link principle?

As the condition guarding the manoeuvre decision is a massive Boolean
combination of atomic percepts, individual misperceptions might mask each
other: not every single pedestrian needs to be detected, as safely crossing a
pedestrian lane does not depend on the particular number of pedestrians being
present. Likewise, slight misplacements of perceived objects is irrelevant, as e.g.
a slight offset in locating a cyclist will not change drivability of the manoeuvre.
When the guard condition reflects these properties, this can induce a considerably
lower misevaluation rate for the overall condition than for its constituents, i.e.
than for the atomic percepts dealing with detecting, locating, and classifying
objects. Within this note, we are rendering this intuitive argument rigorous
and formal, thus lifting reliability levels of combinatorial critical environmental
perception well beyond the figures for atomic percepts achieved by state-of-the-art
perception [8] paired with fusion techniques [14].

The main result of this paper is a methodology for, first, formally estab-
lishing and, second, constructively optimizing refined bounds on the risks of
misperception for guard conditions concerning safety-critical manoeuvres based
on the rates of misperception of atomic environmental artefacts. It complements
formal synthesis-based approaches towards achieving safe controllers as well as
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Fig. 1. A traffic situation requiring a safety-critical manoeuvre decision

engineered control architectures, as our reference architecture does not restrict
the typically highly proprietary planning and manoeuvre control of HAV, and
instead provides a generic interface between any such proprietary solutions and
the perception chain. It does so by allowing to tune guard conditions pertaining
to critical manoeuvre decisions based on the confidence level of the underlying in-
dividual percepts, allowing to optimise the trade-off between availability (induced
from enabling the guarded action) and safety (bounding the error of erratically
enabling an action due to misconception to societally accepted risk).

3 A simple example

The following example is taken from [6]. Consider the blue ego car being in the
situation depicted in Fig. 1. When the ego car detects the obstacle A1, it will
consider an evasive manoeuvre across the dividing line into the oncoming lane.
This manoeuvre would, however, only be adopted if (1) it is necessary to avoid
collision on the originally planned track and (2) it is considered safe w.r.t. the
available information about the environmental state.

The manoeuvre would thus be (safe-)guarded by a guard condition g defined
as g ≡ necessary ∧ safe, where

necessary ≡
7∨

x=6

5∨
y=1

obstacle@(xego + x, y)

denotes that some type of obstacle is detected as being present on the own
lane, i.e. between 1 and 5 in y position, within relevant x distance (here, for the
sake of being able to depict the example, shown as just 6 to 7 grid elements
ahead in the x direction; the real figure would be considerably larger). Within
the ontology, obstacle denotes an arbitrary type of road-blocking object and is
defined as a disjunction about different basic object classification labels, like
trash container, tire, debris, or parked/slow car (cf. Fig. 1). Note that this very
definition already induces some fault-tolerance w.r.t. to misperception of atomic
percepts: identifying the necessity for circumvention neither requires identifying
the full back frontier of the obstacle, as the disjunction across y positions would
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evaluate to true already if only a fraction of the frontier is detected, nor identifying
correctly the exact type of obstacle, as obstacle is a disjunction across numerous
obstacle types. Even identification of the x position of the obstacle would permit
for tolerances if circumvention manoeuvres are dimensioned with a safety margin:
locating A1 further left than it actually is would not cause risk (yet extend
the circumvention), while locating it too far right stays collision-free if the
misplacement remains within the safety margin. Note the combinatorially vast
number of distorted perceptions of A1 that would thus still lead to the same truth
value as the ground truth does. The likelihood of failing to detect the necessity of
a circumvention consequently remains considerably lower than the unreliability
of atomic percepts. This implies that the rate of false negative verdicts in the
evaluation of necessary remains comparatively low. We will later see that, by just
some rewriting to the way necessary is expressed, we will also be able to reduce
the false-positive rate of the evaluation of necessary further to a frequency well
below the false-positive rate of the atomic percepts.

We now turn to the safety condition, yet do in this note simplify its exposition
slightly by omitting some additional conditions that are structurally perfectly
similar to the ones shown. These omissions deal with occluded areas and are
perfectly symmetric to the conditions on oncoming traffic explicated in the sequel.
With these simplifications, the safety condition reads

safe ≡ ¬
10∨
y=6


∨20

x=1 pedestrian@(xego + x, y) ∨∨40
x=−4 car@(xego + x, y) ∨∨60
x=−1 motorcycle@(xego + x, y)

 .

Its evaluation determines the presence of critical objects in the oncoming lane
within the ego car’s vicinity, constituting the safety condition that may block
the circumvention manoeuvre when its execution may become hazardous. As
this condition safe structurally resembles necessary with an outermost negation
added, its fault-tolerance properties are in principle dual: where necessary is
massively disjunctive and therefore tolerant against some or even numerous
lacking or inaccurate percepts, safe as a negation over a disjunction essentially
is conjunctive and consequently seems to require completeness of all percepts
across the large set of atomic observations it mentions. This would imply that
the very safety condition safe were not only as, but even orders of magnitude
more fragile against misperception than any of the atomic percepts involved!
Sufficiently reliable evaluation of the safety condition would consequently seem
elusive, given that reliability of atomic percepts already falls considerably short
of our actual safety targets. Fortunately, we will see that also here, a rewriting of
the condition safe can help. Due to the duality, this rewriting now would have to
reduce the false-negative rate in the evaluation of safe, thus being dual to the
one applied to necessary .

The argument that we want to either minimize false-positive rate or false-
negative rate of a disjunctive state condition, depending on the polarity of its
occurrence, does however only apply when formula like necessary or safe stand
in isolation. Boolean combinations of such disjunctive state conditions, where the
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satisfying violations of subformulae occurring in opposite polarity (like necessary
and safe in the example) can overlap, may require compromises. Furthermore,
an — in principle desirable — minimization of false detections (i.e. of false-
positive rate or false-negative rate, resp.) may not always be appropriate, as it
unfortunately also tends to minimize the true detection (i,e, true-positive rate
or true-negative rate, resp.), thus maximizing safety at the price of minimizing
availability of a — presumably useful — action.

Luckily, this problem can be alleviated by careful analysis (and modification
whenever beneficial) of the Boolean problem structure of the conditions safe,
necessary , and the guard condition g within the general mathematical framework
provided in the next section. Subsequent sections will then exploit the framework
to rigorously quantify the reliability gain that the Boolean structure of the guard
condition provides over the atomic percepts, as well as show how to constructively
rewrite the guard condition by phrasing its true-positive and false-positive rates
as a constrained optimization problem.

4 Boolean guard formulae as classifiers under uncertainty

Let Φ be a formula that guards a safety-critical manoeuvre in the sense that the
driving function will only adopt the manoeuvre when it has positive evidence of
the validity of Φ in the current situation, implying that the manoeuvre would be
avoided (and a safer substitute adopted) whenever Φ is violated or evaluation
of Φ remains inconclusive. The formula g ≡ necessary ∧ safe from the previous
section is an example of such a guard condition Φ.

Generally, such formulae Φ comprise massive Boolean combinations of condi-
tions on individual cells of the occupancy grid, where both the particular cells
referenced and the individual conditions vary situationally. E.g. Φ may safeguard
a transit through a shared traffic space by ensuring that there are no vulnerable
road users in the street, where the geometric position of the referenced areas of
the occupancy grid depend on the own car’s position as well as the particular
geometry of the shared space and the planned trajectory through that space.
In this particular setting, Φ = s1 ∧ s2 ∧ · · · ∧ sn is a conjunction of statements
si = ¬oi, where oi = pedestriani ∨ cyclist i is a disjunction of atomic percepts ai,j
expressing the property “there is a vulnerable road user of type j at the cell ci of
the occupancy grid”. The truth value of each atom ai,j therein directly depends
on a classifier output, which is a classifier for the object classes “pedestrian” or
“cyclist”, resp., in this particular example.

The central problem we are facing obviously is that the percepts ai,j are not
reliable wrt. ground truth Ai,j , as there is a non-trivial risk for lacking perception
of an object or for misclassification of a perceived object. We consequently have
to distinguish between the ground truth Ai.j underlying such an atomic percept
and the possibly distorted percept ai,j . E.g., it may be true that there is a
pedestrian at cell i (i.e. Ai,pedestrian holds), but we misperceive her as a waste
bin (i.e. ¬ai,pedestrian as well as ai,waste bin hold).
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The first — rather trivial, yet crucial — observation is that there is no
direct need to align ai,j with Ai,j , i.e. to minimize the misperception rates
of individual classifiers, but only a need to sufficiently reduce the misevalua-
tion rate of the compound condition Φ. Let us denote by GT (Φ) the formula
Φ[a1,1, . . . , an,m/A1,1, . . . , An,m] where all percepts ai,j have been replaced by
their (factually unknown) ground truth Ai,j . Then, in any situation σ assigning
truth values to all ground-truth atoms Ai,j as well as to all percepts ai,jv, the
truth value GT (Φ)(σ) represents the (desired, yet unknown in practice) actual
value of the guard condition Φ, while Φ(σ) is the result of evaluating Φ on the
potentially distorted percepts. We follow the tradition to write σ |= ψ if ψ(σ)
evaluates to true and σ ̸|= ψ if ψ(σ) evaluates to false, for any formula ϕ. Thus,
we call σ a false positive for Φ iff σ |= GT (Φ) while σ ̸|= Φ. We call σ a true
positive for Φ iff σ |= GT (Φ) and σ |= Φ.

As false positives induce risk (e.g. due to suggesting overtaking when it actually
is unsafe) while true positives are constitutional for system performance (e.g.
enabling overtaking whenever safely possible), our obligation then is to ensure that
the false-positive rate remains below a defined threshold Θ pertaining to societally
acceptable risk while maximizing true-positive rate. As Φ is a complex Boolean
combination of atomic statements Ai,j , this is not identical to the problem of
maximizing the true-positive rates and minimizing the false-positive rates for
the classifiers generating the percepts ai,j . Simple as the above observation is,
it already has profound consequences for the pragmatics of developing safety-
critical autonomous systems, as it implies that the currently prevailing isolated
optimization of computer vision for high detection rates may not be the most
effective approach towards overall system safety and performance. We will not
elaborate on this issue within this note, yet leave it to future exploration.

5 Equivalence of logically distinct guard conditions with
respect to ground truth

The second — and more profound — observation is that the above problem
statement provides us with liberty in phrasing the condition Φ. Especially if the
real world satisfies some relevant invariants ι — which it inevitably does — then
we can rephrase Φ into Φ′ such that in all worlds satisfying the invariant ι, the
two formulae Φ and Φ′ evaluate identically, i.e.

ι |= GT (Φ) ⇐⇒ GT (Φ′) , (1)

where, as usual, ϕ |= ψ denotes that any model of ϕ (i.e. every world satisfying
ϕ) also is a model of the formula ψ (i.e ψ holds too in those worlds). In the
sequel, we call formulae satisfying Equation (1) world equivalent (W-equivalent
for short):

Definition 1. Given a propositional invariant ι, two propositional formulae Φ
and Φ′ over atoms ai,j referring to percepts are called W-equivalent modulo ι iff
property (1) holds.
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The interesting property is that W-equivalent formulae, despite always agreeing
over the ground truth, may well feature substantially different positive rates,
both for true and for false positives.

For an extremely simplified example, consider that flat obstacles are only
relevant if they have a size of at least 6 grid elements — all smaller ones we
circumvent while staying in lane or drive over them, letting them pass between
our wheels. The invariant ι for relevant flat obstacles thus is that they cover six
grid elements at least, such that in the ground truth, either none or at least six
grid elements feature a relevant flat obstacle. Then the formula

ϕ ≡
3∨

x=1

5∨
y=1

flatobstacle@(xego + x, y) (2)

expressing presence of a flat obstacle directly in front of the ego car is, for any
k ∈ {1, . . . , 6}, W-equivalent wrt. ι to

ϕk ≡
3∑

x=1

5∑
y=1

flatobstacle@(xego + x, y) ≥ k , (3)

where we adopt the standard convention to identify false with 0 and true with
1 when taking the sum. Nevertheless, their positive rates vary obviously, as
satisfying formula ϕk gets harder for larger k, with the easiest instance given
by k = 1 being logically equivalent to ϕ. Being harder to satisfy means that the
positive rates get smaller. This applies both to the false positive rates — which
is beneficial — and — detrimentally — to the true positive rates.

To provide an analytically solvable example of this effect, consider the stronger
invariant ι′ that any relevant flat obstacle covers exactly six grid elements. Then
all instance ϕk of (3) are still W-equivalent modulo ι′ and their false-positive
rates and true-positive rates can, by straightforward reduction to binomial
distributions, be analytically described by the formulae in Table 1, where tp,
fp, tn and fn denote the true-positive rates, false-positive rates, true-negative
rates, and false-negative rates, resp., of the atomic classifiers. For simplicity of
the example, these are assumed to be uniform and stochastically independent

obstacles fp(ϕk) tp(ϕk)
present

0
∑15

i=k

(
15
i

)
fpitn15−i —

1 —
∑15

i=k

∑i
j=0

(
6
j

)
tp jfn6−j

(
15−6
i−j

)
fpi−jtn15−6−(i−j)

2 —
∑15

i=k

∑i
j=0

(
12
j

)
tp jfn12−j

(
15−12
i−j

)
fpi−jtn15−12−(i−j)

Table 1. False-positive rates and true-positive rates for the guard formula ϕk from (3)
in dependence of k ∈ {1, . . . , 6} for the cases of none to two obstacles of size 6 grid cells
being present in the critical region.
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

0 o. 0.965 0.833 0.602 0.352 0.164 0.061 fp(ϕk)

1 o. 1− 2 · 10−6 1− 6 · 10−4 0.999 0.992 0.954 0.834 tp(ϕk)

2 o. 1− 6 · 10−11 1− 5 · 10−9 1− 1 · 10−7 1− 3 · 10−6 1− 4 · 10−5 1− 4 · 10−4 tp(ϕk)

Table 2. False- and true-positive rates for the guard formula ϕk from (3) in dependence
of k ∈ {1, . . . , 6} when the detection rates for the atomic classifiers are tp = 0.85,
fp = 0.2, tn = 0.8, and fn = 0.15.

across the occupancy grid. In practice, stochastic dependencies are obviously
to be expected between adjacent grid elements. Extending the analysis to such
spatial and furthermore to spatio-temporal dependencies is subject to future work.
Qualitatively, the expected effects are, however, similar, as spatial dependencies
affect both the ground truth (where geometric connectedness of objects permits
additional inference) and the perception (where mispercepts may be correlated).
These true-positive rates etc. are in practice determined empirically by the
usual statistical testing methods and thus known (up to a confidence) for the
operational design domain.

When these classification rates are tp = 0.85, fp = 0.2, tn = 0.8, fn = 0.15
then this results in the false and true positive rates for ϕk reported in Table 2. As
expected, the positive rates decrease rapidly when k grows. For the safety-critical
false-positive rate, we observe a ≈ 16-fold reduction when going from the original
formula ϕ or its logical equivalent ϕ1 to ϕ6: In detail, ϕ = ϕ1 has ≈ 5-fold fp of
the atomic sensor, while ϕ6 has just ≈ 3

10 fp of the atomic sensor (cf. entries in
Table 2 marked in bold-print). The true-positive rate (i.e., performance) degrades
also significantly to 83.4% in worst case (cf. second line of Table 2), but still
remains at the level of an individual classifier, which features tp = 85%.

Note that these reductions in positive rates come with no change in the
ground-truth semantics, as W-equivalent formulae evaluate identically wrt. the
ground truth according to Definition 1 and property (1). It also is worth noting
that the above reductions do not degrade when going from this toy example to
realistically fine and large grids — to the contrary, due to the binomials involved,
these results obviously become exponentially better over a finer grid!

6 Synthesizing optimal representations of guard conditions

Having seen that the replacement of a safety-critical guard condition by a W-
equivalent variant can significantly alter true-positive and false-positive rates, an
obvious follow-up question is whether we can effectively rewrite such a guard
condition into a more appropriate form. The exact problem we would like to
solve is the following:

Problem 1. Given a guard condition Φ and a societally accepted maximum risk
θ ∈]0, 1[, automatically synthesize a formula Φ′ that is W-equivalent to Φ and
satisfies the two requirements
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Safety: the false positive rate of Φ′ remains below θ, i.e.

fp(Φ′) ≤ θ , (4)

Performance: the true positive rate of Φ′ be maximal among the safe W-
equivalent rewritings of Φ, i.e.

tp(Φ′) = max{tp(Φ′′) | ϕ′′ W-equivalent to Φ, tp(Φ′′) ≤ θ} . (5)

To solve Problem 1, we first observe that it is a non-standard instance of
don’t-care optimization. For the sake of rendering the solution representable in a
conference paper, we adopt an even smaller example than in Section 5. Assume
three observational atoms A1, A2, A3 and a guard condition g(A1, A2, A3) as
given in Table 3 as a truth table. The ground-truth invariant is that never a
single atom Ai can be true. Entries in the truth table satisfying

∑3
i1
Ai = 1 are

consequently “don’t-cares”, as they cannot arise in reality.

The don’t-care entries in the truth table allow for setting them arbitrarily to
0 or 1. It would, however, in general be a bad idea to set all of them to 0, as this
nicely minimizes fp(g′), but also minimizes tp(g′) unfortunately, thus optimizing
safety at the price of minimizing performance. Vice versa, setting all don’t-cares
to 1 would maximize both fp(g′) and tp(g′), thus optimizing performance while
minimizing safety. In general, we need clever compromises, to be achieved by a
differentiated setting of the individual don’t-cares to 0 or 1.

To achieve such, we observe that both the true-positive rate and the false-
positive rate of g′ can be represented as affine terms over the don’t-care assign-
ments as follows: Denote by pxyzabc the likelihood of perceiving the ground truth

A1 A2 A3 g(A1, A2, A3)

0 0 0 0
0 0 1 ∗
0 1 0 ∗
0 1 1 1
1 0 0 ∗
1 0 1 1
1 1 0 1
1 1 1 0

Table 3. Truth table of a guard condition. Entries satisfying
∑3

i1
Ai = 1 have an

arbitrary “don’t care” truth value (marked with ∗), as they do not arise in ground truth
due to a ground-truth invariant that no single atom Ai can be true in isolation.
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(A1, A2, A3) = (a, b, c) as (a1, a2, a3) = (x, y, z). Then

fp(g′) = p001000 x1 + p010000 x2 + p011000 + p100000 x3 + p101000 + p110000 + (6)

p001111 x1 + p010111 x2 + p011111 + p100111 x3 + p101111 + p110111 ,

tp(g′) = p001011 x1 + p010011 x2 + p011011 + p100011 x3 + p101011 + p110011 + (7)

p001101 x1 + p010101 x2 + p011101 + p100101 x3 + p101101 + p110101 +

p001110 x1 + p010110 x2 + p011110 + p100110 x3 + p101110 + p110110

holds, where x1, x2, and x3 are the truth values assigned to the three don’t-
cares (A1, A2, A3) = (0, 0, 1), (A1, A2, A3) = (0, 1, 0), and (A1, A2, A3) = (1, 0, 0),
respectively.

An assignment x1 ∈ {0, 1}, x2 ∈ {0, 1}, and x3 ∈ {0, 1} to the don’t-cares
satisfying the above two requirements Safety and Performance can now mechani-
cally be found by solving the following 0-1 integer-linear program:

Maximize tp(g′)

subject to fp(g′) ≤ θ and x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1},

where fp(g′) and tp(g′) are the affine expressions from the right-hand sides of
Equations (6) and (7). Note that the objective function tp(g′) and the domain
constraint fp(g′) ≤ θ do directly encode the two requirements (5) and (4) from
Problem 1. The above 0-1 integer-linear program can routinely be solved by any
integer-linear programming (ILP) solver. The values reported for x1 to x3 in
the optimal solution do then directly fill the don’t-care entries in Table 3 if a
solution exists. If no solution exists, then it is impossible to satisfy the societal
acceptance threshold Θ on false positives by an W-equivalent rewriting.

The above construction, however, does not scale. Being based on enumerating
the entries of the truth table, its size is strictly exponential in the number
of atoms Ai involved in the guard condition. The construction consequently
becomes impractical when considerably more than 20 atoms are involved, which
still constitutes a clearly minuscule occupancy grid. But luckily there is a lot of
symmetry in formulae (6) and (7): one would for example expect that p001000 =
p010000 = p100000 , as all of them involve flipping one bit from 0 to 1 in (A1, A2, A3) =
(0, 0, 0). Likewise, p001111 = p010111 = p100111 and p011100 = p101010 = p110001 and p001101 =
p100101 = p010110 = p100110 = p010011 = p001011 etc. Grouping together equal factors and
exploiting the symmetry in the solution space stemming from the fact that for
subexpressions of the form ax1 + ax2 + ax3 only the sum x1 + x2 + x3 is decisive
while it is irrelevant which of x1, x2, and x3 is set to 1, we can replace above ILP
by the ILP

Maximize tp(g′′)

subject to fp(g′′) ≤ θ and x ∈ {0, . . . , 3},
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where fp(g′) and tp(g′) are defined by the affine integer expressions

fp(g′′) = 3p001000 x+ 3p001111 x+ 3p011000 + 3p110111

= (30)(
3
1)(

0
0)p

001
000 x+ (33)(

0
0)(

3
2)p

001
111 x+ (30)(

3
2)(

0
0)p

011
000 + (33)(

0
0)(

3
1)p

110
111 , (8)

tp(g′′) = 6p001011 x+ 3p011011 + 3p100011 x+ 6p101011

= (32)(
1
0)(

2
1)p

001
011 x+ (32)(

1
0)(

2
0)p

011
011 + (32)(

1
1)(

2
2)p

100
011 x+ (32)(

1
1)(

2
1)p

101
011 . (9)

Note that the binomial factors in front of the probabilities pxyzabc directly reflect
the numbers of bits set in the ground truth (a, b, c) in the first binomial factor,
the number of bits flipped from 0 to 1 among the 0 bits in the ground truth
(a, b, c) to obtain the perception (x, y, z) in the second binomial factor, and the
number of bits flipped from 1 to 0 in the third binomial factor. Therefore, the
rather compact — and therefore as computationally inexpensive to formulate
and solve — formulae (8) and (9) can be constructed directly by combinatorial
reasoning without enumerating truth table entries. This process would in practice
start from a Don’t-Care-BDD representation of the guard condition g rather than
a truth table like that from Table 3 used here for illustration. Implementation of
this procedure is underway such that experimental results cannot yet be reported.

7 Related Work

Partially or fully autonomous cyber-physical systems, like highly automated
vehicles, operate in an uncertain dynamic environment, which they have to
perceive and understand in order to draw often safety-critical decisions. Such
systems consequently tend to be learning-enabled — not necessarily end-to-
end, but at least in central components relevant to perception and situation
assessment. Their perception of the environment, i.e. the detection of properties
about the dynamic environment, is enabled through inherently noisy sensors
and subsequent machine-learnt classifiers. Especially in environmental perception
based on computer vision, the uncertainties and the misperception rates induced
by such machine-learnt classification algorithms remain substantial when visibility
conditions are non-ideal [10]. The resultant misperception rates are orders of
magnitude higher than the safety targets of, e.g., HAV [15].

Characterisation and control of perceptive uncertainty can be achieved at
multiple stages of an architecture for automated cyber-physical systems, starting
from the individual sensor level over fusion of multiple sensors and sensing
modalities to control of uncertainty propagation through the decision and planning
layers of a robotics architecture. The measures taken at these different stages
complement each other, with our contribution being located at the last of the
aforementioned three stages.

Representations of uncertainty impacting the inferences underlying planning
decisions have been investigated within the paradigm of probabilistic robotics [23],
among others, particularly as applied to vehicle localization in urban environments
[13, 19, 14], with localization being a special and historically more well-understood
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instance of the general problem of safe-guarding critical manoeuvre decisions. In
these and related works such as [1, 17], the environment uncertainty is usually
represented as probabilistic beliefs. Our constructive approach in this article,
as well as its analytical counterpart in [6], complements such approaches by
analysing and optimising the uncertainty propagation through the complex
Boolean guard conditions usually employed for enabling and safeguarding safety-
critical manoeuvres, be it as enabling preconditions of such manoeuvres or as
side-conditions in safety shields [2] for AI components [12] or as fallback conditions
in SIMPLEX-type fault-tolerant control architectures [22, 16].

It ought to be noted that approaches confining and controlling error propa-
gation in the decision layer complement optimizations on the previous layers of
sensing and sensor fusion, directly benefiting from, but also enhancing the impact
of, enhancements at these layers. Various approaches to combining multiple
classifiers can be found in the literature, e.g., see [7, 21] for an overview. The goal
of such a combination is often to compensate for individual shortcomings in the
performance by a better performance of the multitude of classifiers [21]. While in
the pre-classification level the combination happens at the sensor or raw data
level, the focus of this note is on fusion of classifiers at the post-classification
level, as on-the-fly combinations of the decision of multiple atomic classifiers are
considered. A major challenge for fusion on the decision level arises from the fact
that the least genuine information about the object of observation is available at
this level [11].

Our approach inherits the traditional setting of balancing between true
positive rates, i.e. performance, and false positive rates, i.e. quantitative risk
induced by misclassification, of adjustable classifiers, which often is pursued by
analysing the empirical ROC (receiver operating characteristics) curve [3, 20].
Such analysis facilitates the optimisation of individual classifiers as well as their
combination to obtain a better performance by a multitude of classifiers [21].

In a sense, our approach can be interpreted as a combination of classifiers
too, namely one per grid element, albeit with given Boolean combination logic,
which distinguishes it from the aforementioned fusion approaches, where the
combination is to be designed based on the mutual performance figures of the
multiple classifiers. The only degree of freedom we have thus is to modify the
combinatory logic such that it maintains the same logical function on all ground-
truth instances (see Def. 1, yet still enhances resilience to misclassification. The
key to modification of the combinatory logic is the identification of don’t cares in
its truth tables due to ground-truth invariants. The exploitation of such ground-
truth invariants itself is not original; it has already been investigated in visual
classification tasks to enhance the accuracy of scene segmentation tasks, e.g. in
[5], where the natural vertical layering (e.g. that vehicles stand on the tarmac
and not vice versa) of visual scenes is used as invariant.

It is also interesting to note that the paradigm of occupancy grids and hence
the approach suggested carries well beyond automotive manoeuvre planning and
similar real-time path planning problems requiring distance between objects.
Similar approaches have been used to cover safety problems of contact robotics,
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like the safe use of robot manipulators in collaborative scenarios (cobots) as well as
physical human-robot interaction. To generate collision-free trajectories, models
of human motion ought to be integrated for better estimation, and path planning
needs to be optimised for execution speed and safety. Both the environment and
the human operator are represented via occupancy grids in [24] and exploited
for planning that adapts to different human operators or their hand positions.
If direct contact between the manipulator and the human is relevant to the
task, the contact forces must also be limited. [18] have integrated biomechanical
injury information into the robot controller for this purpose, with different force
thresholds applying to different body parts, thus requiring occupancy maps for
representing the positions of human body parts. Symmetrically, occupancy maps
of the full robot arm, rather than just the tool centre point, are employed in [9]
to limit joint torques in whole arm manipulations with their multiple contact
points, inducing spatially distributed safety constraints.

8 Conclusion

Reliable guarantees for the safety of autonomous systems are a prerequisite
for their societal acceptance. The quest for such guarantees cannot easily be
served, at least not at the appropriate quantitative safety levels for safety-critical
systems like autonomous vehicles at usual speed of traffic, due to the relatively
high misperception rates of technical perception chains. When mapping an
autonomous vehicle’s vicinity, their error rates tend to — currently as well as
for the foreseeable future — be orders of magnitude higher than the pertinent
safety targets for autonomous operation. Any compositional analysis inducing a
weakest-link principle, i.e. suggesting that the overall system’s reliability would be
bounded by perception performance, is thus bound to generate grossly insufficient
evidence of system safety.

We consequently are in need of analytical methods or even constructive
means to ensure that our systems actually are “safer than perception”. More
precisely, this requires a rigorous assessment of the likelihood that a safety-critical
manoeuvre is erroneously adopted, and this assessment has to provide much
tighter bounds for such erratic manoeuvre adoption than for any misperception.
In a companion report [6], we have addressed the analytical problem of rigorously
proving a quantitative reliability figure for the evaluation of a complex Boolean
guard condition that is safeguarding a safety-critical manoeuvre, in the sense that
its evaluation to true is a necessary prerequisite for adoption of the manoeuvre.
We have been able to show that for complex guard conditions, the rates of critical
misevaluations can be proven to be significantly lower than misperception rates
concerning atomic percepts.

In this article, we drove this analysis further and gave it a constructive tweak
in that we asked for solving an optimization problem that deals with finding that
rewriting of a given guard condition that is most resilient to misperceptions while
retaining the semantics of the original guard condition. Concretely, we asked for
finding a formula rewriting that
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1. is a equivalent to the original guard over all ground-truth instances,
2. reaches the societally given safety target in that its rate of false positives, i.e.

of suggesting the critical manoeuvre when it is undue, remains below the
societal acceptance threshold, and

3. optimizes performance in that it yields maximal true positive rate, i.e. actually
enables the critical manoeuvre when it is due.

We showed that this problem has a constructive solution by reducing it to integer-
linear programming, thereby automatically synthesizing a formula rewriting
satisfying the aforementioned three requirements.

Practical implementation of the algorithm and of modifications leveraging
symmetries as well as symbolic reasoning for enhancing scalability are underway
as a student project. Future work will deal with a spatio-temporal rather than
just propositional analysis, refining our analysis by topological and geometrical
properties induced by the grid structure and temporal correlations induced by
the dynamics. Obviously, a slight misplacement of a detected object both is more
likely to happen and more unlikely to change a guard’s perceived truth value than
a large displacement. Similar arguments apply in the temporal domain, where true
positives and true negatives tend to have a higher temporal persistence than false
positives or false negatives, respectively. While these properties have extensively
been studied for effectively filtering atomic mispercepts, their impact on the
evaluation of complex spatio-temporal conditions serving as guards remains a
subject of ongoing research [4].

Another interesting question concerns transfer of the results to other reference
architectures than occupancy grids, especially to object list representations of the
environment. These do classify objects, locate them at an environmental position,
and add a bounding box characterizing their geometric extent. The latter is often
inexact, giving rise to quality measures like the (relative) area of intersection over
union for the perception. Related perception problems are detecting an object
part (e.g., a car backlight) instead of the full object (the car) due to visibility
problems like occlusion, then attributing a subcomponent label and an accordingly
smaller bounding box. Both phenomena fit our analysis in principle, as again a
reasonable guard condition will talk about a non-trivial Boolean combination
of more than percept (now in terms of class, relative position and size of the
bounding box), and rephrasing it to increase resilience is as relevant. Object lists
add convexity properties and shape constraints due to the bounding boxes, but
can otherwise be seen as mostly isomorphic to 2.5-dimensional occupancy grids,
locating the bounding boxes in the perspective plane rather than the street plane.
It will again be an issue of future research to fill in the details.
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