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Abstract. A control system consists of a plant component and a con-
troller which periodically computes a control input for the plant. We
consider systems where the controller is implemented by a feedforward
neural network with ReLU activations. The reachability problem asks,
given a set of initial states, whether a set of target states can be reached.
We show that this problem is undecidable even for trivial plants and
�xed-depth neural networks with three inputs and outputs. We also show
that the problem becomes semi-decidable when the plant as well as the
input and target sets are given by automata over in�nite words.

1 Introduction

Cyber-physical systems consist of digital (cyber) and physical components. A
common instance of this paradigm is a control system, consisting of a phys-
ical plant and a controller whose purpose is to steer the plant to a desired
behavior [7]. Control theory studies the automatic synthesis of such controllers,
which, for nonlinear systems, is a di�cult task. Machine learning has long been
successfully applied to tackle this task, where the learned controller was �rst rep-
resented by a (shallow) feedforward neural network [19] and more recently by a
deep neural network (DNN) [15]. We call a control system with a DNN controller
a neural-network control system (NNCS). Due to their black-box nature, DNNs
have raised concerns about their correctness and safety, in particular in terms
of the worst-case behavior [28]. However, as they are deployed in safety-critical
applications, proving machine-learned NNCS correct is of utmost importance,
and considerable resources have been invested into their veri�cation [16, 17].

In this paper, we are concerned with the fundamental problem of safety for
NNCS: given a set of initial states and a set of bad states of the plant, does the
controller prevent the plant to reach a bad state when started in an initial state?
Note that the failure of safety is captured by a reachability property: does there
exist an initial state from which a bad state is reachable? Thus, in the following,
we study the reachability problem for NNCS.

Recall that an NNCS is a combination of a DNN (the controller) and a plant.
It is known that the reachability problem is already undecidable for su�ciently
complex plants, even without any controller [13]. So the question becomes: is
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there a simple but expressive class of plants for which the reachability problem
is tractable? Inspired by similar results for recurrent neural networks [27, 10],
we show in Section 3 that the answer is negative: the reachability problem is
undecidable even for trivial plants. Intuitively, a DNN can simulate one compu-
tational step of a two-counter machine. Thus, a recurrent neural network can
simulate a two-counter machine. As a DNN controlling a plant is essentially
recurrent (as it bases its control decisions on the current state of the plant),
undecidability follows.

On the positive side, we show in Section 4 that the reachability problem is
at least semi-decidable for plants whose behavior can be captured by automata
over in�nite words: Sälzer et al. showed that the behavior of DNNs can be
captured by such automata [23]. Hence, relying on standard automata-theoretic
constructions, the composition of a DNN and an automata-de�nable plant can
also be captured by automata. The class of automata-de�nable plants includes,
for instance, plants that are described by multi-mode linear maps. Such maps
are able to express, for example, the dynamics of adaptive cruise controls [14].

1.1 Related work

Reachability in NNCS is generally challenging. Existing approaches typically
combine techniques developed for dynamical systems (the plant) [2] and neural
networks [16]. Tools such as CORA [1, 12], JuliaReach [5, 25], and NNV [18] com-
pete in the ARCH-COMP friendly competition, and we refer to the report [17]
for typical examples of NNCS.

Undecidability of questions about unbounded computations with piecewise-
linear (PWL) functions is long known, e.g., periodicity in iterated 2D maps [22]
or reachability for linear hybrid automata [9]. Similar results have been shown
for DNNs. Siegelmann and Sontag showed undecidability for unbounded compu-
tations in DNNs with activations given by a PWL approximation of the sigmoid
function (which e�ectively is the ReLU function truncated at 1) [27]. Later,
Hyotyniemi showed an encoding of two-counter machines in recurrent neural
networks (RNNs) with ReLU activations [10]. While an RNN can conceptually
be seen as the special case of an NNCS without a plant, the formalism di�ers.
We thus consider our encoding of two-counter machines in NNCS of independent
(yet mainly pedagogical) value. Cabessa showed an encoding of two-counter ma-
chines in a variant of RNNs with conditional weights called spike-timing depen-
dent plasticity [6]. Recently, we also showed an encoding of two-counter machines
in decision-tree control systems [26], where the DNN is replaced by a decision
tree with simple conditions x ≤ c for some variable x and constant c.

Katz et al. studied the problem of reachability in a ReLU DNN without it-
eration and showed that, given polyhedral (i.e., described by linear constraints)
input and output sets, the reachability problem is NP-complete [11]. Sälzer and
Lange later �xed some issues in the proof, mainly related to the e�ective repre-
sentation of real numbers [24].

Sälzer et al. recently presented an encoding of a DNN in a weak Büchi au-
tomaton [23]. We build on this encoding for the analysis of semi-decidability.
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Neural-network controller N

Plant P

x0

xk = P (xk−1,uk)
uk = N(xk−1)

Fig. 1: Neural-network control system.

2 Preliminaries

We start by formally introducing the type of DNN under study.

De�nition 1 (Deep neural network). A neuron is a function ν : Rm → R
with ν(x) = σ(

∑m
i=1 cixi+b), where m is the input dimension, the ci ∈ Q are the

weights, b ∈ Q is the bias, and σ : R → R is the activation function of ν, which
is either the identity function or the recti�ed linear unit (ReLU) y 7→ max{y, 0}.

A layer is a sequence of neurons (ν1, . . . , νn), all of the same input dimension
m, computing the function ℓ : Rm → Rn given by ℓ(x) = (ν1(x), . . . , νn(x)). The
dimensions m and n are the input resp. output dimension of the layer.

A deep neural network (DNN) N is a sequence of layers (ℓ1, . . . , ℓk) such that
the output dimension of ℓi is the input dimension of ℓi+1 for all i = 1, . . . , k−1.
The last layer is the output layer and all other layers are called hidden layers.
If m is the input dimension of ℓ1 and n is the output dimension of ℓk, then the
DNN computes the function N : Rm → Rn de�ned as

N(x) = ℓk(ℓk−1(. . . ℓ1(x) . . . )).

Next, we de�ne control systems as depicted in Fig. 1. The system consists of
a plant and a controller (here: a DNN) and acts in iterations: �rst, the controller
computes a control input u for the plant based on the current state x of the
plant. Next, from its inputs x and u, the plant computes a new state. Then the
process repeats. For the plant, we restrict ourselves to discrete time, i.e., we are
only interested in its output and not its intermediate states. For now, we also
abstract from the concrete type of plant and just view it as a general function.

De�nition 2 (Neural-network control system). A neural-network control
system (NNCS) is a tuple (P,N) with a plant P : Rd+c → Rd and a controller
given by a DNN N : Rd → Rc, i.e., d is the dimension of the states of P and c
is the dimension of the control vectors computed by N .

The semantics of an NNCS are given as a sequence of states xk and control
inputs uk, induced by some initial state x0 ∈ Rd via

uk = N(xk−1)

xk = P (xk−1,uk)

We introduce a shorthand to express one iteration of the control loop in
Fig. 1, i.e., the composition of the DNN followed by the plant, to compute xk
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from xk−1:
CP,N (xk−1) = P (xk−1, N(xk−1))

We will focus on sets of states represented by linear constraints. Given a ∈
Qn, b ∈ Q, the set Ha,b = {x ∈ Rn | ⟨a,x⟩ ≤ b} is a linear constraint, where
�⟨·, ·⟩� denotes the scalar product. A polyhedron is a �nite intersection of linear
constraints. Let P(n) denote the set of all polyhedra in n dimensions.

We are now ready to de�ne the reachability problem for NNCS.

Problem 1 (Reachability problem for NNCS). Given a DNNN : Rd → Rc, a plant
P : Rd+c → Rd, a polyhedron X0 ∈ P(d) of initial states, and a polyhedron φ ∈
P(d) of target states, does there exist an initial state x0 ∈ X0 and a k ∈ N such
that (CP,N )k(x0) ∈ φ?

3 Undecidability

In this section, we prove that the NNCS reachability problem is undecidable.
The proof is by a reduction from the halting problem for two-counter machines.

Formally, a two-counter machine M is a sequence

(0 : I0)(1 : I1) · · · (k − 2 : Ik−2)(k − 1 : STOP),

where the �rst element of a pair (ℓ : Iℓ) is the line number and Iℓ for 0 ≤ ℓ < k−1
is an instruction of the form

� INC(i) with i ∈ {0, 1},
� DEC(i) with i ∈ {0, 1}, or
� JZ(i, ℓ′) with i ∈ {0, 1} and ℓ′ ∈ {0, . . . , k − 1}.

A con�guration of M is of the form (ℓ, c0, c1) with ℓ ∈ {0, . . . , k − 1} (the
current value of the program counter) and c0, c1 ∈ N (the current contents of
the two counters). The initial con�guration is (0, 0, 0) and the unique successor
con�guration of a con�guration (ℓ, c0, c1) is de�ned as follows:

� If Iℓ = INC(i), then the successor con�guration is (ℓ+1, c′0, c
′
1) with c′i = ci+1

and c′1−i = c1−i.
� If Iℓ = DEC(i), then the successor con�guration is (ℓ + 1, c′0, c

′
1) with c′i =

max{ci − 1, 0} and c′1−i = c1−i.
� If Iℓ = JZ(i, ℓ′) and ci = 0, then the successor con�guration is (ℓ′, c0, c1).
� If Iℓ = JZ(i, ℓ′) and ci > 0, then the successor con�guration is (ℓ+1, c0, c1).
� If Iℓ = STOP, then (ℓ, c0, c1) has no successor con�guration.

The unique run of M (starting in the initial con�guration) is de�ned as the
maximal sequence γ0γ1γ2 · · · of con�gurations γj ∈ N3 where γ0 is the initial
con�guration and γj+1 is the successor con�guration of γj , if γj has a successor
con�guration. This run is either �nite (line k−1 is reached) or in�nite (line k−1
is never reached). In the former case, we say that M terminates. The halting
problem for two-counter machines asks, given a two-counter machineM, whether
M terminates when started in the initial con�guration.
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Proposition 1 ([20]). The halting problem for two-counter machines is unde-
cidable.

In the following, we show that the halting problem for two-counter machines
can be reduced to the reachability problem for NNCS by simulating the semantics
of a two-counter machine by a NNCS.

Theorem 1. The reachability problem for NNCS is undecidable.

Proof. Fix some two-counter machine M with k instructions. We show how to
construct a gadget for each instruction of M (except for the STOP instruction),
which we then combine into a DNN simulating one con�guration update of M.
Thus, the reachability problem for NNCS (which involves the iterated application
of the DNN) then allows to simulate the full run of M.

Formally, the DNN implements a function from R3 → R3 with the following
property: If the three inputs encode a non-stopping con�guration of the two-
counter machine, then the three outputs encode the successor con�guration.
Note that, since the weights and biases of the DNN we construct are integral,
the outputs given integral inputs are also integral. In the following, we often
implicitly assume that inputs are integral when we explain the intuition behind
our construction.

Our construction of the DNN �ts into the common architecture [8] that
all hidden neurons use ReLU activations and all output neurons use identity
activations. We let the plant component simply turn the control input into the
new state (P (x,u) = u), as the DNN already simulates M.

In some more detail, for every instruction (ℓ; Iℓ) of M, we construct one
gadget simulating this instruction. All these gadgets will be executed in parallel
in one iteration of the DNN, but only one of them (determined by the current
value of the program counter) will actually perform a computation. The other
gadgets just compute the identity function for each of their inputs. Thus, in the
end we need to subtract (k − 2) · v from each output v.

All gadgets have inputs named pc (representing the current value of the
program counter), and c0 and c1 (representing the current counter values), as
well as three outputs named pc′ (representing the value of the program counter
of the successor con�guration), and c′0 and c′1 (representing the counter values of
the successor con�guration). To simplify our construction, we use an additional
gadget that conceptually checks whether the value of the program counter is
equal to some �xed line number ℓ. This gadget is shown in Fig. 2. The output aℓ
of this gadget (which has only one input pc) satis�es

aℓ =

{
1 pc = ℓ,

0 pc ̸= ℓ.

The outputs aℓ of these auxiliary gadgets (we have one for each line number ℓ)
will be fed into the other gadgets simulating the instructions.

Next, we describe the instruction gadgets, where we restrict ourselves to the
counter with index zero; the counter with index one is treated in the analogous
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pc
−ℓ+ 1

−1

aℓ

−2

Fig. 2: Auxiliary gadget for instruction ℓ. Here and in all later illustrations of
DNNs, dots denote neurons, where �lled dots use ReLU activations and empty
dots can use either identity or ReLU activations (the choice is irrelevant since
the value before the activation is nonnegative). Sometimes, as in this case, the
empty dots are only present for a fully-connected architecture. Edge colors only
serve the visual association with the weights. We omit weight 1 and bias 0 as
well as connections with weight 0.

way. Fig. 3 shows these gadgets together with the possible outputs. It is easy to
verify that each gadget performs the corresponding computation whenever the
input pc is equal to ℓ, and the identity function otherwise. Let us stress that
each gadget we construct depends both on the line number and the instruction.

The �nal layout of the gadgets is shown in Fig. 4. Essentially, each auxiliary
gadget is wired to the corresponding instruction gadget, and at the end we need
to subtract the inputs k − 2 times as described above. Note that there is no
gadget for the STOP instruction (instruction k − 1 in M). When pc is equal to
k− 1, then the DNN computes the identity function: First, all aℓ are equal to 0;
Hence, each of the k − 1 instruction gadgets Iℓ computes the identity function;
after the subtraction, we are indeed left with the identity.

Finally, the initial input to the DNN is x0 = (0, 0, 0) (representing the initial
con�guration) and the target set is φ = {(k− 1, c0, c1) | c0, c1 ≥ 0}, where k− 1
is the last instruction number (STOP) of M. Clearly, M terminates if and only
if the NNCS reaches a state satisfying φ when started in X0 = {x0}. ⊓⊔

We note that the DNNs simulating two-counter machines are rather simple.

Corollary 1. The NNCS reachability problem remains undecidable for DNNs
with integral weights, 3 input and output dimensions, 6 hidden layers, a singleton
initial set, and a target set o = v for some output neuron o and constant v ∈ N.

One may wonder whether the six hidden layers are necessary. In general,
one cannot hope to obtain a small neural network when removing layers [4].
However, since we can iterate the NNCS, and the plant model is not interfering,
we can reduce one iteration of a DNN N with six hidden layers (constructed in
the proof above) to seven iterations of a DNN N ′ with one hidden layer.1 Fig. 5
shows a sketch of the construction idea. Essentially, we take the hidden layers
of N and stack them as one wide hidden layer in N ′. (For instance, layer ℓ1 has
width k + 1.) We refer to each of these hidden layers as a track. For each track,
we need to add input and output dimensions corresponding to the number of

1 Typically, neural networks with only one hidden layer are not called deep.
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c0
c1
pc
aℓ

c′0
c′1
pc′

(a) ℓ : INC(0) gadget.

Condition x′ y′ pc′

pc = ℓ c0 + 1 c1 pc + 1
pc ̸= ℓ c0 c1 pc

(b) ℓ : INC(0) gadget's possible output values.

c0
c1
pc
aℓ

c′0
c′1
pc′

−1

(c) ℓ : DEC(0) gadget.

Condition c′0 c′1 pc′

pc = ℓ max{c0 − 1, 0} c1 pc + 1
pc ̸= ℓ c0 c1 pc

(d) ℓ : DEC(0) gadget's possible output values.

c0
c1
pc
aℓ

1 −1

pc′
c′1

c′0−1

ℓ′ − ℓ− 2

(e) ℓ : JZ(0, ℓ′) gadget.

Condition c′0 c′1 pc′

pc = ℓ and c0 = 0 c0 c1 ℓ′

pc = ℓ and c0 ̸= 0 c0 c1 pc + 1
pc ̸= ℓ c0 c1 pc

(f) ℓ : JZ(0, ℓ′) gadget's possible output values.

Fig. 3: The gadgets for the three instructions. See Fig. 2 for further explanations.

neurons in the respective previous and next hidden layers. The output of track j
is fed to track j + 1 (and the output of the last track is fed to the �rst track).

When presented with an input vector x0 of appropriate size, the �rst track
performs the computation of the �rst hidden layer and feeds its output to the
second track, and so on. After seven iterations, the output of the last track will
equal the output of the seven-layer DNN N after the �rst iteration. This output
is then used as the input of the �rst track again and the process continues.

Finally, we need to make sure that the other tracks do not accidentally pro-
duce an output that leads to a target state between multiples of seven iterations.
In order to only consider outputs in every seventh iteration, we use the addi-
tional gadget shown in Fig. 5(b). This gadget has seven inputs and outputs and
is to be stacked below the other DNN. When the initial input is (1, 0, 0, 0, 0, 0, 0),
the 1 is propagated to the second index, and so on, until it arrives back at the
�rst index after seven iterations.

The target set φ now simply needs to get extended to arbitrary values in the
auxiliary dimensions, except for the seven-last entry (m1

i ), which has to equal
one. Formally: φ′ = (φ ∧m1

i ≤ 1 ∧ −m1
i ≤ −1).

In summary, by scaling the number of inputs and outputs with M, we obtain
a DNN with one (wide) hidden layer.
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c0

c1

pc a0

...

ak−2

I0

...

Ik−2

c′0
c′1
pc′

−k + 2

−k + 2

−k + 2

Fig. 4: Complete construction. Each box represents an auxiliary gadget aℓ resp.
an instruction gadget Iℓ. Small dots denote junctions of connections and have no
further semantics. The last layer is the output layer (with identity activations).

Corollary 2. The NNCS reachability problem remains undecidable for DNNs
with integral weights, one hidden layer, a singleton initial set, and a target set o =
v for some output neuron o and constant v ∈ N.

4 Semi-decidability

In this section, we show that the NNCS reachability problem is semi-decidable
for a particular class of plants. Indeed, from a single initial state x0, we can
enumerate all states CP,N (x0)

k reachable in k iterations and for each of them
decide membership in the target polyhedron φ. However, since we allow for an
initial set X0, this algorithm is not e�ective.

The image of a polyhedron under a ReLU DNN is a (�nite) union of poly-
hedra [21]. If we choose a class of plants with the same property, we obtain an
e�ective algorithm again. In what follows, we show a more general result by using
an automaton encoding of DNNs from [23]. This will allow us to more abstractly
consider a class of plants that is de�nable in the same automaton formalism.

We slightly deviate from the original approach by Sälzer et al. [23] in that we
use a more expressive automaton model, as we are (unlike them) not bothered
with e�ciency considerations (since our problem is undecidable).

De�nition 3 (Büchi automaton). A (nondeterministic) Büchi automaton
(NBA) A = (Q,Σ, q0, δ, F ) consists of a �nite set Q of states, a �nite alphabet Σ,
an initial state q0 ∈ Q, a transition relation δ ⊆ Q×Σ×Q, and a set of accepting
states F ⊆ Q.

A run on an in�nite word w = a0a1 . . . is an in�nite sequence of states
q0, q1, . . . starting in the initial state and satisfying (qi, ai, qi+1) ∈ δ for all i ≥ 0.
A run is accepting if qi ∈ F for in�nitely many i. The language of A is

L(A) = {w ∈ Σω | A has an accepting run on w}.

A language is ω-regular if there exists an NBA that accepts it.
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c10
c11

pc1

...

i71
i72
i73

ℓ1

...

ℓ7

o10
o11
o12

o20
o21
o22
...
o2k

...

o70
o71
o72

(a) Stacking of previous hidden layers.

m1
i

m2
i

...

m7
i

...

m1
o

m2
o

...

m7
o

(b) Modulo-7 counter.

Fig. 5: Construction with a single hidden layer.

In the following, we recall an e�ective encoding of real numbers in NBA
from [23]. Let Σ = {+,−, 0, 1, .}. A word w = san . . . a0.b0b1 . . . with n ≥ 0,
s ∈ {+,−}, ai, bi ∈ {0, 1} encodes the real value

dec(w) = (−1)sign(s) ·

(
n∑

i=0

ai · 2i +
∞∑
i=0

bi · 2−(i+1)

)
where sign(s) = 0 if s = + and sign(s) = 1 if s = −. As usual, the word encoding
is not unique, but the decoding is [23, Page 5].

Now, we switch to a word encoding of multiple numbers by using a product
alphabet. A symbol over this product alphabet Σk is a k-vector of symbols. A
word over Σk is well-formed if it is of the form

w =

s1...
sk


a1,n...
ak,n

 · · ·

a1,0...
ak,0


....
.


b1,0...
bk,0


b1,1...
bk,1

 · · ·

where si ∈ {+,−}, ai,j , bi,h ∈ {0, 1} for i = 1, . . . , k, j = 0, . . . , n, and h =
0, 1, . . . . In other words, the signs and the point are aligned, which can be
achieved by �lling up with leading zeros. The language WF k of well-formed
words is ω-regular [23]. The selection of a single component i ∈ {1, . . . , k} is
obtained in the obvious way:

wi = siai,n . . . ai,0 . bi,0bi,1 . . .

If an NBA over Σk accepts only well-formed words, then we can understand
its language as a relation over Rk. Furthermore, linear constraints are also ω-
regular [23]. Thus, as NBA are closed under intersection and union, (�nite unions
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of) polyhedra are also ω-regular. Finally, we can also use NBAs to encode func-
tions f : Rm → Rn via their graphs, which are relations over Rm+n.

Sälzer et al. showed that every function computable by a DNN can be rep-
resented by an NBA.2

Proposition 2 (Theorem 1 in [23]). Let N : Rd → Rc be a DNN. There
exists an NBA AN over Σd+c with

L(AN ) = {w ∈WFd+c | N(dec(w1), . . . , dec(wd))=(dec(wd+1), . . . , dec(wd+c))}.

For our application, we need to slightly modify the automaton AN from
Proposition 2 so that it also copies its input for further use. This modi�cation
can be implemented by replacing each transition label (a1, . . . , an, a

′
1, . . . , a

′
m)

by (a1, . . . , an, a1, . . . , an, a
′
1, . . . , a

′
m).

Corollary 3. Let N : Rd → Rc be a DNN. There exists an NBA ÂN over
Σd+d+c with

L(ÂN ) = {w ∈ WF d+d+c | (w1, . . . , wd) = (wd+1, . . . , wd+d) and

N((dec(w1), . . . , dec(wd)) = (dec(wd+d+1), . . . , dec(wd+d+c))}.

Thus, the semantics of DNNs can be captured by NBAs. This is in general
not true for plants. Hence, in the following, we restrict ourselves to plants that
can also be captured by NBAs.

De�nition 4 (ω-regular plant). A plant P : Rd+c → Rd is ω-regular if there
exists an NBA AP over Σd+c+d such that

L(AP ) = {w ∈ WF d+c+d |
P (dec(w1), . . . , dec(wd+c)) = (dec(wd+c+1), . . . , dec(wd+c+d))}.

Now, both the DNN and the plant are given by NBA. Hence, we can apply
standard automata-theoretic constructions to capture a bounded number of ap-
plications of the control loop by repeatedly composing the NBA for the DNN and
the NBA for the plant. To this end, we introduce the (parametric) composition
operator ◦n constructing from two NBAs A1 and A2, which accept the graphs
of two functions f1 : Rk1 → Rk and f2 : Rk → Rk2 , an NBA A1 ◦k A2 accepting
the graph of x 7→ f2(f1(x)).

Lemma 1 (Lemma 4 of [23]). Let k, k1, k2 ≥ 0 and let A1 and A2 be two
NBAs over Σk1+k and Σk+k2 , respectively. Then, there exists an NBA A1 ◦k A2

over Σk1+k2 accepting the language

{(u1, . . . , uk1 , wk+1, . . . , wk+k2) | ∃(v1, . . . , vk) s.t.
(u1, . . . , uk1 , v1, . . . , vk) ∈ L(A1) and

(v1, . . . , vk, wk+1, . . . , wk+k2) ∈ L(A2)}.
2 They actually proved the result for the more restrictive class of eventually-always
weak NBA. But for us it is more prudent to consider the more general class of NBA.
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Now we are ready to prove our main result of this section: NNCS reachability
restricted to ω-regular plants is semi-decidable. Note that this is tight, as the
problem is undecidable as shown in Theorem 1: the plant just returning its
control input as output is ω-regular.

Theorem 2. The NNCS reachability problem is semi-decidable when restricted
to ω-regular plants.

Proof. We are given a problem instance (N,P,X0, φ) and need to (semi)-decide
whether there exists a k ≥ 0 such that (CP,N )k(x0) ∈ φ for some x0 ∈ X0. Let d
be the dimension of the states of P and c be the dimension of the control vectors
computed by N , respectively.

Let AN (over Σd+d+c) and AP (over Σd+c+d) be the NBAs as in Corollary 3
and De�nition 4. Then, we de�ne I0 to be an NBA accepting the graph of the
d-ary identity function

L(I0) = {w ∈ WF d+d | (w0, . . . , wd) = (wd+1, . . . , wd+d)}

and, for k ≥ 1, Ik = Ik−1 ◦d (ÂN ◦d+c AP ).
By construction, we have

(w1, . . . , wd, wd+1, . . . , wd+d) ∈ L(Ik)

if and only if

(dec(wd+1), . . . , dec(wd+d)) ∈ (CP,N )k(dec(w1), . . . , dec(wd)).

There are NBAs A0 and Aφ accepting X0 and φ, as they are polyhedra. Both
these NBAs have alphabet Σd, while each Ik has alphabet Σd+d where the �rst
d components encode the inputs and the last d components encode the outputs.
Hence, to restrict A0 and Aφ to X0 and φ, we need to widen A0 and Aφ to NBA

with alphabet Σd+d. Formally, let NBAs Â0 and Âφ (both over Σd+d) such that

� L(Â0) contains the encodings of all vectors (x1, . . . , xd+d) ∈ WF d+d such
that (x1, . . . , xd) is in X0 ⊆ Rd and (xd+1, . . . , xd+d) ∈ Rd is arbitrary, and

� L(Âφ) contains the encodings of all vectors (x1, . . . , xd+d) ∈ WF d+d such
that (x1, . . . , xd) ∈ Rd is arbitrary and (xd+1, . . . , xd+d) is in φ ⊆ Rd.

Now, there exist an x0 ∈ X0 and a k ≥ 0 such that (CP,N )k(x0) ∈ φ if and only

if the language of Â0 ∩ Ik ∩ Âφ is nonempty.
In summary, to semi-decide the NNCS reachability problem for ω-regular

plants, we iteratively construct Ik for k ≥ 0 and check Â0∩Ik∩Âφ for nonempti-
ness. ⊓⊔

Let us remark that the construction in Theorem 2 does not require the initial
set X0 and the target set φ to be polyhedral. It is su�cient that they are ω-
regular to e�ectively decide (non)emptiness of the intersection. The class of
ω-regular languages is strictly more expressive than polyhedral sets.3 Thus, our
result is more general than the statement of Theorem 2.

3 For example, the set of natural numbers is ω-regular (in the encoding used here),
but it is not a polyhedron.
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4.1 Multi-mode linear plants

In this subsection, we give an example of a plant model that falls into the class
of ω-regular languages. Our example is inspired by linear hybrid automata [3],
which are �nite state machines with constant-term ordinary di�erential equa-
tions (ODEs) in the modes (states) and guard conditions on the transitions.

Hybrid automata have two sources of nondeterminism: an enabled transition
need not be taken (may-semantics), and multiple transitions may be enabled
at the same time. Because we have restricted ourselves to deterministic plants
in this work, we need to introduce some restrictions. First, we assume a �xed
rational control period, and a transition can only be taken at the end of such a
period. Then, the solution of the ODEs is a linear map, which can be analyti-
cally computed, and our system becomes discrete-time. Second, we require that
exactly one guard is enabled, i.e., in each mode, all guards are pairwise-disjoint
and their union is the universe. To simplify the presentation, we do not include
discrete updates with the transitions but note that these can easily be added.
We call the resulting model a multi-mode linear map.

De�nition 5 (Multi-mode linear map). A multi-mode linear map is a tu-
ple H = (M,E, d, c, F,G) consisting of a �nite set M ⊆ N of modes, a set
of edges E ⊆ M × M , input and control dimensions d and c, a �ow func-
tion F : M → Qd×d×Qd×c×Qd (mapping a mode to two matrices and a vector),
and a guard function G : E → FUP(d+ c) (where FUP denotes the set of �nite
unions of polyhedra), satisfying

� if (m,m′) ∈ E and (m,m′′) ∈ E, then G(m,m′) ∩G(m,m′′) = ∅, and
�
⋃

m′∈M G(m,m′) = Rd+c for all m ∈ M .

The function fH : M × Rd+c → M × Rd computed by H is de�ned as

fH(m,x1, . . . , xd, u1, . . . , uc) = (m′, x′
1, . . . , x

′
d)

where F (m) = (A,B, c),

(x′
1, . . . , x

′
d) = A · (x1, . . . , xd)

T +B · (u1, . . . , uc)
T + c,

and m′ is the unique mode such that

(x′
1, . . . , x

′
d, u1, . . . , uc) ∈ G(m,m′).

Note that the �rst component of inputs for fH is restricted to modes of H,
not arbitrary reals as stipulated by the de�nition of plants. However, this is not
an issue as long as the initial input has a mode in the �rst component, as fH
also returns only outputs that have a mode in the �rst component.

Lemma 2. Multi-mode linear maps are ω-regular plants.

Proof (Sketch). The following operations can be implemented by NBAs [23]:
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� Multiplication of real inputs with constants in Q and addition of reals. These
two operations allow us to compute the output (x′

1, . . . , x
′
d) from (x1, . . . , xd)

and (u1, . . . , uc).
� Checking membership of a vector of reals in a �xed polyhedron. This allows

us to compute the next mode m′ from the current mode m, the current state
(x1, . . . , xd), and the current input (u1, . . . , uc), as m

′ is determined by the
membership of (x1, . . . , xd, u1, . . . , uc) in a �nite union of polyhedra.

This allows us to build an NBA that accepts the graph of fH for every given
multi-mode linear map H. ⊓⊔

Corollary 4. The NNCS reachability problem is semi-decidable when the plant
is restricted to multi-mode linear maps.

5 Conclusion

In this paper, we studied the reachability problem for dynamical systems con-
trolled by deep neural networks. We showed that, for the common ReLU activa-
tions, the problem is undecidable even when the plant is trivial and the network
is restricted to integral weights and a singleton initial set; furthermore, we can
either �x the input and output dimensions to 3 and the number of hidden layers
to 6, or use a single hidden layer. We then turned to the question when the prob-
lem can be semi-decided; here we extended a recent encoding of neural networks
in Büchi automata and showed that ω-regular plants as well as input and target
sets are su�cient for a semi-decision procedure; as an example, we demonstrated
that a model akin to linear hybrid automata is ω-regular.
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